通俗的解释交叉熵与相对熵

原文  如何通俗的解释交叉熵与相对熵?

相关公式:

假设现在有一个样本集中两个概率分布 p,q,其中 p 为真实分布,q 为非真实分布。假如,按照真实分布 p 来衡量识别一个样本所需要的编码长度的期望为:
H(p)=         信息熵
 
但是,如果采用错误的分布 q 来表示来自真实分布 p 的平均编码长度,则应该是:
H(p,q)=        交叉熵
 
此时就将 H(p,q) 称之为交叉熵。
相对熵 = 交叉熵 - 信息熵:
信息熵,是随机变量或整个系统的不确定性。熵越大,随机变量或系统的不确定性就越大。
相对熵,用来衡量两个取值为正的函数或概率分布之间的差异,也叫KL距离, KL散度
交叉熵,用来衡量在给定的真实分布下,使用非真实分布所指定的策略消除系统的不确定性所需要付出的努力的大小。

在机器学习中,真实分布 p为观测数据(标签),非真实分布q为神经网络计算的分布,目的就是不停的训练q,使得交叉熵不断降低至最小。

 


讨论这个问题需要从香农的信息熵开始。

小明在学校玩王者荣耀被发现了,爸爸被叫去开家长会,心里悲屈的很,就想法子惩罚小明。到家后,爸爸跟小明说:既然你犯错了,就要接受惩罚,但惩罚的程度就看你聪不聪明了。这样吧,我们俩玩猜球游戏,我拿一个球,你猜球的颜色,你每猜一次,不管对错,你就一个星期不能玩王者荣耀,当然,猜对,游戏停止,否则继续猜。当然,当答案只剩下两种选择时,此次猜测结束后,无论猜对猜错都能 100% 确定答案,无需再猜一次,此时游戏停止(因为好多人对策略1的结果有疑问,所以请注意这个条件)。

 

题目 1:爸爸拿来一个箱子,跟小明说:里面有橙、紫、蓝及青四种颜色的小球任意个,各颜色小球的占比不清楚,现在我从中拿出一个小球,你猜我手中的小球是什么颜色?

为了使被罚时间最短,小明发挥出最强王者的智商,瞬间就想到了以最小的代价猜出答案,简称策略 1,小明的想法是这样的。

在这种情况下,小明什么信息都不知道,只能认为四种颜色的小球出现的概率是一样的。所以,根据策略 1,1/4 概率是橙色球,小明需要猜两次,1/4 是紫色球,小明需要猜两次,其余的小球类似,所以小明预期的猜球次数为:

H = 1/4 * 2 + 1/4 * 2 + 1/4 * 2 + 1/4 * 2 = 2

 

题目 2:爸爸还是拿来一个箱子,跟小明说:箱子里面有小球任意个,但其中 1/2 是橙色球,1/4 是紫色球,1/8 是蓝色球及 1/8 是青色球。我从中拿出一个球,你猜我手中的球是什么颜色的?

小明毕竟是最强王者,仍然很快得想到了答案,简称策略 2,他的答案是这样的。


在这种情况下,小明知道了每种颜色小球的比例,比如橙色占比二分之一,如果我猜橙色,很有可能第一次就猜中了。所以,根据策略 2,1/2 的概率是橙色球,小明需要猜一次,1/4 的概率是紫色球,小明需要猜两次,1/8 的概率是蓝色球,小明需要猜三次,1/8 的概率是青色球,小明需要猜三次,所以小明预期的猜题次数为:

H = 1/2 * 1 + 1/4 * 2 + 1/8 * 3 + 1/8 * 3= 1.75

 

题目 3:其实,爸爸只想让小明意识到自己的错误,并不是真的想罚他,所以拿来一个箱子,跟小明说:里面的球都是橙色,现在我从中拿出一个,你猜我手中的球是什么颜色?

最强王者怎么可能不知道,肯定是橙色,小明需要猜 0 次。

 

上面三个题目表现出这样一种现象:针对特定概率为 p 的小球,需要猜球的次数 = \log_2 \frac{1}{p} ,例如题目 2 中,1/4 是紫色球, \log_2 4 = 2 次,1/8 是蓝色球, \log_2 8 = 3 次。那么,针对整个整体,预期的猜题次数为: \sum_{k=1}^N p_k \log_2 \frac{1}{p_k} ,这就是信息熵,上面三个题目的预期猜球次数都是由这个公式计算而来,第一题的信息熵为 2,第二题的信息熵为 1.75,最三题的信息熵为 1 * \log 1 = 0 那么信息熵代表着什么含义呢?

信息熵代表的是随机变量或整个系统的不确定性,熵越大,随机变量或系统的不确定性就越大。上面题目 1 的熵 > 题目 2 的熵 > 题目 3 的熵。在题目 1 中,小明对整个系统一无所知,只能假设所有的情况出现的概率都是均等的,此时的熵是最大的。题目 2 中,小明知道了橙色小球出现的概率是 1/2 及其他小球各自出现的概率,说明小明对这个系统有一定的了解,所以系统的不确定性自然会降低,所以熵小于 2。题目 3 中,小明已经知道箱子中肯定是橙色球,爸爸手中的球肯定是橙色的,因而整个系统的不确定性为 0,也就是熵为 0。所以,在什么都不知道的情况下,熵会最大,针对上面的题目 1~~ 题目 3,这个最大值是 2,除此之外,其余的任何一种情况,熵都会比 2 小。

所以,每一个系统都会有一个真实的概率分布,也叫真实分布,题目 1 的真实分布为(1/4,1/4,1/4,1/4),题目 2 的真实分布为(1/2,1/4,1/8,1/8),而根据真实分布,我们能够找到一个最优策略,以最小的代价消除系统的不确定性而这个代价大小就是信息熵,记住,信息熵衡量了系统的不确定性,而我们要消除这个不确定性,所要付出的【最小努力】(猜题次数、编码长度等)的大小就是信息熵。具体来讲,题目 1 只需要猜两次就能确定任何一个小球的颜色,题目 2 只需要猜测 1.75 次就能确定任何一个小球的颜色。

现在回到题目 2,假设小明只是钻石段位而已,智商没王者那么高,他使用了策略 1,即

爸爸已经告诉小明这些小球的真实分布是(1/2,1/4, 1/8,1/8),但小明所选择的策略却认为所有的小球出现的概率相同,相当于忽略了爸爸告诉小明关于箱子中各小球的真实分布,而仍旧认为所有小球出现的概率是一样的,认为小球的分布为(1/4,1/4,1/4,1/4),这个分布就是非真实分布。此时,小明猜中任何一种颜色的小球都需要猜两次,即 1/2 * 2 + 1/4 * 2 + 1/8 * 2 + 1/8 * 2 = 2。

很明显,针对题目 2,使用策略 1 是一个坏的选择,因为需要猜题的次数增加了,从 1.75 变成了 2,小明少玩了 1.75 的王者荣耀呢。因此,当我们知道根据系统的真实分布制定最优策略去消除系统的不确定性时,我们所付出的努力是最小的,但并不是每个人都和最强王者一样聪明,我们也许会使用其他的策略(非真实分布)去消除系统的不确定性,就好比如我将策略 1 用于题目 2(原来这就是我在白银的原因),那么,当我们使用非最优策略消除系统的不确定性,所需要付出的努力的大小我们该如何去衡量呢?

这就需要引入交叉熵,其用来衡量在给定的真实分布下,使用非真实分布所指定的策略消除系统的不确定性所需要付出的努力的大小

正式的讲,交叉熵的公式为: \sum_{k=1}^N p_k \log_2 \frac{1}{q_k} ,其中 p_k 表示真实分布, q_k 表示非真实分布。例如上面所讲的将策略 1 用于题目 2,真实分布 p_k = (\frac {1}{2},\frac {1}{4},\frac {1}{8},\frac {1}{8}) , 非真实分布 q_k = (\frac {1}{4},\frac {1}{4},\frac {1}{4},\frac {1}{4}) ,交叉熵为 \frac{1}{2} * \log_2 4 + \frac{1}{4} * \log_2 4 + \frac{1}{8} * \log_2 4 + \frac{1}{8} * \log_2 4 = 2 ,比最优策略的 1.75 来得大。

因此,交叉熵越低,这个策略就越好,最低的交叉熵也就是使用了真实分布所计算出来的信息熵,因为此时 p_k = q_k ,交叉熵 = 信息熵。这也是为什么在机器学习中的分类算法中,我们总是最小化交叉熵,因为交叉熵越低,就证明由算法所产生的策略最接近最优策略,也间接证明我们算法所算出的非真实分布越接近真实分布。

 

最后,我们如何去衡量不同策略之间的差异呢?这就需要用到相对熵,其用来衡量两个取值为正的函数或概率分布之间的差异,即:

KL(f(x) || g(x)) = \sum_{ x \in X} f(x) * \log_2 \frac{f(x)}{g(x)}

现在,假设我们想知道某个策略和最优策略之间的差异,我们就可以用相对熵来衡量这两者之间的差异。即,相对熵 = 某个策略的交叉熵 - 信息熵(根据系统真实分布计算而得的信息熵,为最优策略),公式如下:

KL(p || q) = H(p,q) - H(p) =  \sum_{k=1}^N p_k \log_2 \frac{1}{q_k} - \sum_{k=1}^N p_k \log_2 \frac{1}{p_k} = \sum_{k=1}^N p_k \log_2 \frac{p_k}{q_k}

所以将策略 1 用于题目 2,所产生的相对熵为 2 - 1.75 = 0.25.

 

参考:

《数学之美》吴军

Information entropy

还有,小明同学,我帮你分析得这么清楚,快带我上王者。

作者:CyberRep
链接:https://www.zhihu.com/question/41252833/answer/195901726
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

posted @ 2018-01-15 17:36  dahu1  Views(719)  Comments(0Edit  收藏  举报