python Queue模块使用

Python中,队列是线程间最常用的交换数据的形式。Queue模块是提供队列操作的模块,虽然简单易用,但是不小心的话,还是会出现一些意外。

创建一个“队列”对象
import Queue
q = Queue.Queue(maxsize = 10)
Queue.Queue类即是一个队列的同步实现。队列长度可为无限或者有限。可通过Queue的构造函数的可选参数maxsize来设定队列长度。如果maxsize小于1就表示队列长度无限。

将一个值放入队列中
q.put(10)    put(item[, block[, timeout]])

将item放入队列中。

  1. 如果可选的参数block为True且timeout为空对象(默认的情况,阻塞调用,无超时)。
  2. 如果timeout是个正整数,阻塞调用进程最多timeout秒,如果一直无空空间可用,抛出Full异常(带超时的阻塞调用)。
  3. 如果block为False,如果有空闲空间可用将数据放入队列,否则立即抛出Full异常

其非阻塞版本为put_nowait等同于put(item, False)

将一个值从队列中取出
q.get()    get([block[, timeout]])

调用队列对象的get()方法从队头删除并返回一个项目。可选参数为block,默认为True。如果队列为空且block为True,get()就使调用线程暂停,直至有项目可用。如果队列为空且block为False,队列将引发Empty异常。

从队列中移除并返回一个数据。block跟timeout参数同put方法

其非阻塞方法为`get_nowait()`相当与get(False)

Python Queue模块有三种队列及构造函数:
1、Python Queue模块的FIFO队列先进先出。     class Queue.Queue(maxsize)
2、LIFO类似于堆,即先进后出。                         class Queue.LifoQueue(maxsize)
3、还有一种是优先级队列级别越低越先出来。    class Queue.PriorityQueue(maxsize)

此包中的常用方法(q = Queue.Queue()):
q.qsize() 返回队列的大小
q.empty() 如果队列为空,返回True,反之False
q.full() 如果队列满了,返回True,反之False
q.full 与 maxsize 大小对应
q.get([block[, timeout]]) 获取队列,timeout等待时间
q.get_nowait() 相当q.get(False)
非阻塞 q.put(item) 写入队列,timeout等待时间
q.put_nowait(item) 相当q.put(item, False)


q.task_done() 在完成一项工作之后,向任务已经完成的队列发送一个信号,每一个get()调用得到一个任务,接下来的task_done()调用告诉队列该任务已经处理完毕。如果当前一个join()正在阻塞,它将在队列中的所有任务都处理完时恢复执行(即每一个由put()调用入队的任务都有一个对应的task_done()调用)。

q.join() 实际上意味着等到队列为空,再执行别的操作.阻塞调用线程,直到队列中的所有任务被处理掉。

只要有数据被加入队列,未完成的任务数就会增加。当消费者线程调用task_done()(意味着有消费者取得任务并完成任务),未完成的任务数就会减少。当未完成的任务数降到0,join()解除阻塞。

先进先出:

import Queue
q = Queue.Queue(maxsize=5)
for i in range(5):
    q.put(i)
while not q.empty():
    print q.get()

结果:

0
1
2
3
4
View Code

先进后出:

q = Queue.LifoQueue()
for i in range(5):
    q.put(i)
while not q.empty():
    print q.get()

结果:

4
3
2
1
0
View Code

优先级:

#优先级队列
import Queue
import threading
class Job(object):
    def __init__(self, priority, description):
        self.priority = priority
        self.description = description
        print 'Job:',description
        return
    def __cmp__(self, other):           #需要加上这个比较函数,
        return cmp(self.priority, other.priority)   #Return negative if x<y, zero if x==y, positive if x>y.

q = Queue.PriorityQueue()

q.put(Job(3, 'mid-level job'))
q.put(Job(10, 'low-level job'))
q.put(Job(1, 'high-level job'))

def process_job(q):
    while True:
        next_job = q.get()
        print 'for:', next_job.description
        q.task_done()

workers = [threading.Thread(target=process_job, args=(q,)),
        threading.Thread(target=process_job, args=(q,))
        ]

for w in workers:
    w.setDaemon(True)   #守护进程
    w.start()

q.join()
View Code

运行结果:

Job: mid-level job
Job: low-level job
Job: high-level job
for: high-level job
for: mid-level job
for: low-level job
View Code

复杂一点的

实现一个线程不断生成一个随机数到一个队列中(考虑使用Queue这个模块)
实现一个线程从上面的队列里面不断的取出奇数
实现另外一个线程从上面的队列里面不断取出偶数

#!/usr/bin/python
# coding=utf-8
# __author__='dahu'
# data=2017-
#

import random, threading, time
from Queue import Queue


# Producer thread
class Producer(threading.Thread):
    def __init__(self, t_name, queue):
        # threading.Thread.__init__(self, name=t_name)
        super(Producer,self).__init__(name=t_name)  #两个都可以,倾向于这个
        self.data = queue

    def run(self):
        for i in range(5):  # 随机产生10个数字 ,可以修改为任意大小
            randomnum = random.randint(1, 20)
            print "%s: %s is producing %d to the queue!" % (time.ctime(), self.getName(), randomnum)
            self.data.put(randomnum)  # 将数据依次存入队列
            time.sleep(1)
        print "%s: %s finished!" % (time.ctime(), self.getName())


# Consumer thread
class Consumer_even(threading.Thread):
    def __init__(self, t_name, queue):
        # threading.Thread.__init__(self, name=t_name)
        super(Consumer_even, self).__init__(name=t_name)
        self.data = queue

    def run(self):
        while 1:
            try:
                val_even = self.data.get(1, 5)  # get(self, block=True, timeout=None) ,1就是阻塞等待,5是超时5秒
                if val_even % 2 == 0:
                    print "%s: %s is consuming. %d in the queue is consumed!" % (time.ctime(), self.getName(), val_even)
                    time.sleep(2)
                else:
                    self.data.put(val_even)
                    time.sleep(2)
            except:  # 等待输入,超过5秒  就报异常
                print "%s: %s finished!" % (time.ctime(), self.getName())
                break


class Consumer_odd(threading.Thread):
    def __init__(self, t_name, queue):
        threading.Thread.__init__(self, name=t_name)
        self.data = queue

    def run(self):
        while 1:
            try:
                val_odd = self.data.get(1, 5)
                if val_odd % 2 != 0:
                    print "%s: %s is consuming. %d in the queue is consumed!" % (time.ctime(), self.getName(), val_odd)
                    time.sleep(2)
                else:
                    self.data.put(val_odd)
                    time.sleep(2)
            except:
                print "%s: %s finished!" % (time.ctime(), self.getName())
                break


# Main thread
def main():
    queue = Queue()
    producer = Producer('Pro.', queue)
    consumer_even = Consumer_even('Con_even.', queue)
    consumer_odd = Consumer_odd('Con_odd.', queue)
    producer.start()
    consumer_even.start()
    consumer_odd.start()
    producer.join()
    consumer_even.join()
    consumer_odd.join()
    print 'All threads terminate!'


if __name__ == '__main__':
    main()
View Code

结果:

/usr/bin/python2.7 /home/dahu/PycharmProjects/SpiderLearning/request_lianxi/t9.queue.thread.py
Tue Aug 22 16:12:25 2017: Pro. is producing 15 to the queue!
Tue Aug 22 16:12:25 2017: Con_odd. is consuming. 15 in the queue is consumed!
Tue Aug 22 16:12:26 2017: Pro. is producing 17 to the queue!
Tue Aug 22 16:12:27 2017: Pro. is producing 2 to the queue!
Tue Aug 22 16:12:27 2017: Con_odd. is consuming. 17 in the queue is consumed!
Tue Aug 22 16:12:28 2017: Pro. is producing 15 to the queue!
Tue Aug 22 16:12:29 2017: Con_even. is consuming. 2 in the queue is consumed!
Tue Aug 22 16:12:29 2017: Con_odd. is consuming. 15 in the queue is consumed!
Tue Aug 22 16:12:29 2017: Pro. is producing 18 to the queue!
Tue Aug 22 16:12:30 2017: Pro. finished!
Tue Aug 22 16:12:31 2017: Con_even. is consuming. 18 in the queue is consumed!
Tue Aug 22 16:12:38 2017: Con_odd. finished!
Tue Aug 22 16:12:38 2017: Con_even. finished!
All threads terminate!

Process finished with exit code 0

 

posted @ 2017-08-22 20:04  dahu1  Views(488)  Comments(0Edit  收藏  举报