均方根误差(RMSE),平均绝对误差 (MAE),标准差 (Standard Deviation)
来源:https://blog.csdn.net/capecape/article/details/78623897
RMSE
Root Mean Square Error, 均方根误差
是观测值与真值偏差的平方和与观测次数 m 比值的平方根。
是用来衡量观测值同真值之间的偏差
MAE
Mean Absolute Error ,平均绝对误差
是绝对误差的平均值
能更好地反映预测值误差的实际情况.
标准差
Standard Deviation ,标准差
是方差的算数平方根
是用来衡量一组数自身的离散程度
RMSE 与标准差对比:标准差是用来衡量一组数自身的离散程度,而均方根误差是用来衡量观测值同真值之间的偏差,它们的研究对象和研究目的不同,但是计算过程类似。
RMSE 与 MAE 对比:RMSE 相当于 L2 范数,MAE 相当于 L1 范数。次数越高,计算结果就越与较大的值有关,而忽略较小的值,所以这就是为什么 RMSE 针对异常值更敏感的原因(即有一个预测值与真实值相差很大,那么 RMSE 就会很大)。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· AI与.NET技术实操系列:基于图像分类模型对图像进行分类
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 25岁的心里话
· 闲置电脑爆改个人服务器(超详细) #公网映射 #Vmware虚拟网络编辑器
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· 零经验选手,Compose 一天开发一款小游戏!
· 一起来玩mcp_server_sqlite,让AI帮你做增删改查!!