Mathematica 如何绘制双纵坐标轴的图像?

来源:http://forum.simwe.com/thread-985179-1-1.html

提问:

现在需要作出这样一张图,如附件
数据共用一个横轴,但纵轴不同。不能直接让某一组数据直接乘一个常数以画到一起。
麻烦大家看一下。本版有过关于双坐标轴的讨论,但好像跟这个情况都不太一样,故再此一问。

解答:

方法一:

Plot[{Sin[x], Cos[x]}, {x, -1, 1}, 
 Frame -> {{True, True}, {True, False}}, 
 FrameTicks -> {{Automatic, {{-0.5, 5}, {0, 10}, {0.5, 
      15}}}, {Automatic, None}}, 
 FrameLabel -> {{"Left", "Right"}, {None, None}}]

方法二:

可以参考这个帖子:
https://groups.google.com/d/msg/comp.soft-sys.math.mathematica/CKE9Ghn43x8/F1_JnIbCYjsJ

Clear[TwoAxisDateListPlot];

TwoAxisDateListPlot[f_List, g_List, opts : OptionsPattern[]] := 
 Module[{p1, p2, fm, fM, gm, gM, old, new, newg}, 
  p1 = DateListPlot[f, Axes -> True, Frame -> False, 
    PlotRange -> Automatic];
  p2 = DateListPlot[g, Axes -> True, Frame -> False, 
    PlotRange -> Automatic];
  {fm, fM} = AbsoluteOptions[p1, PlotRange][[1, 2, 2]];
  {gm, gM} = AbsoluteOptions[p2, PlotRange][[1, 2, 2]];
  old = AbsoluteOptions[p2, Ticks][[1, 2, 2]];
  new = Flatten[{Rescale[First[#1], {gm, gM}, {fm, fM}], Rest[#1]}, 
      1] & /@ old;
  newg = {#[[1]], Rescale[#[[2]], {gm, gM}, {fm, fM}]} & /@ g;
  DateListPlot[{f, newg}, Axes -> False, Frame -> True, 
   FrameTicks -> {Automatic, Automatic, None, new}, 
   PlotRange -> {fm, fM}, opts]]

Clear[TwoAxisReverseDateListPlot];

TwoAxisReverseDateListPlot[f_List, g_List, opts : OptionsPattern[]] :=
  Module[{p1, p2, fm, fM, gm, gM, old, new, newg}, 
  p1 = DateListPlot[f, Axes -> True, Frame -> False, 
    PlotRange -> Automatic];
  p2 = DateListPlot[g, Axes -> True, Frame -> False, 
    PlotRange -> Automatic];
  {fm, fM} = AbsoluteOptions[p1, PlotRange][[1, 2, 2]];
  {gm, gM} = AbsoluteOptions[p2, PlotRange][[1, 2, 2]];
  old = AbsoluteOptions[p2, Ticks][[1, 2, 2]];
  new = Flatten[{fM + fm - Rescale[First[#1], {gm, gM}, {fm, fM}], 
       Rest[#1]}, 1] & /@ old;
  newg = {#[[1]], fM + fm - Rescale[#[[2]], {gm, gM}, {fm, fM}]} & /@ 
    g;
  DateListPlot[{f, newg}, Axes -> False, Frame -> True, 
   FrameTicks -> {Automatic, Automatic, None, new}, 
   PlotRange -> {fm, fM}, opts]]

TwoAxisReverseDateListPlot[f_List, g_List, r_, 
  opts : OptionsPattern[]] := 
 Module[{p1, p2, gg, pg2, m, M, fm, fM, gm, gM, ggm, ggM, old, new, 
   newg}, p1 = 
   DateListPlot[f, Axes -> True, Frame -> False, 
    PlotRange -> Automatic];
  gg = g;
  gg[[All, 2]] /= 1 - r;
  p2 = DateListPlot[g, Axes -> True, Frame -> False, 
    PlotRange -> Automatic];
  pg2 = DateListPlot[gg, Axes -> True, Frame -> False, 
    PlotRange -> Automatic];
  {fm, fM} = AbsoluteOptions[p1, PlotRange][[1, 2, 2]];
  {m, M} = {fm, 1/r fM};
  {gm, gM} = AbsoluteOptions[p2, PlotRange][[1, 2, 2]];
  {ggm, ggM} = AbsoluteOptions[pg2, PlotRange][[1, 2, 2]];
  old = AbsoluteOptions[pg2, Ticks][[1, 2, 2]];
  new = Flatten[{(M + m - Rescale[First[#1], {ggm, ggM}, {m, M}]), 
       Rest[#1]}, 1] & /@ old;
  newg = {#[[
       1]], (M + m - (1 - r) Rescale[#[[2]], {gm, gM}, {m, M}])} & /@ 
    g;
  DateListPlot[{f, newg}, Axes -> False, Frame -> True, 
   FrameTicks -> {Automatic, new, None, All}, PlotRange -> {m, M}, 
   opts]]

方法三:

http://wnsl.physics.yale.edu/levelscheme/

posted on 2011-05-26 11:04  大宝pku  阅读(5967)  评论(0编辑  收藏  举报

导航