[Paddle学习笔记][06][图像分类-动态图]

说明:

本例程使用动态图实现的LeNetAlexNetVGGNetGOOGLeNetResNet实现iChanglle-PM病理近视数据集的图像分类任务。


实验代码:

相关类库

import os
import time
import random

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
from PIL import Image

import paddle
import paddle.fluid as fluid
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear, BatchNorm


数据处理

# 图片路径
train_set = './data/PALM-Training400/'
file1 = 'N0012.jpg'
file2 = 'P0095.jpg'

# 读取图片
image1 = Image.open(os.path.join(train_set, file1))
image1 = np.array(image1)
image2 = Image.open(os.path.join(train_set, file2))
image2 = np.array(image2)

print('image1 shape {}, image2 shape {}'.format(image1.shape, image2.shape))

# 显示图片
plt.figure(figsize=(16, 8))

fig = plt.subplot(121)
fig.set_title('Normal', fontsize=20)
plt.imshow(image1)

fig = plt.subplot(122)
fig.set_title('PM', fontsize=20)
plt.imshow(image2)

plt.show()

 

# 读取图片
def load_image(image_path):
    image = Image.open(image_path) # 打开图片文件
    image = image.resize((224, 224), Image.ANTIALIAS) # 缩放图片大小: 224x224
    image = np.transpose(image, (2, 0, 1)).astype('float32') # 转换图片格式: [H,W,C] 到 [C,H,W]
    image = image / 255.0 * 2.0 - 1.0 # 调整像素范围: [-1.0, 1.0]
    
    return image

# 读取训练数据
def train_loader(train_set, batch_size=10):
    # 读取图片名称
    image_name = os.listdir(train_set)
    
    # 读取训练图片
    def reader():
        # 打乱图片顺序
        random.shuffle(image_name)
        
        # 输出批次图片
        batch_image = [] # 图片列表
        batch_label = [] # 标签列表
        for name in image_name:
            # 读取图片
            image_path = os.path.join(train_set, name)
            image = load_image(image_path)
            
            # 设置标签
            if name[0] == 'H' or name[0] == 'N':
                label = 0 # H开头为高度近视,N开头有正常视力,标签为0
            elif name[0] == 'P':
                label = 1 # P开头为病理近视,标签为1
            else:
                raise('Not excepted file name')
            
            # 输出数据
            batch_image.append(image)
            batch_label.append(label)
            if len(batch_image) == batch_size:
                array_image = np.array(batch_image).astype('float32')
                array_label = np.array(batch_label).astype('int64').reshape(-1, 1)
                
                yield array_image, array_label
                
                batch_image = []
                batch_label = []
        
        # 输出剩余图片
        if len(batch_image) > 0:
            array_image = np.array(batch_image).astype('float32')
            array_label = np.array(batch_label).astype('int64').reshape(-1, 1)

            yield array_image, array_label
    
    # 返回读取图片
    return reader

# 读取验证数据
def valid_loader(valid_set, valid_csv, batch_size=10):
    # 读取数据文件
    data_list = open(valid_csv).readlines()
    
    # 读取验证图片
    def reader():
        # 输出批次图片
        batch_image = [] # 图片列表
        batch_label = [] # 标签列表
        for line in data_list[1:]:
            # 读取数据
            line = line.strip().split(',') # 一行数据
            name = line[1] # 图片名称
            label = int(line[2]) # 图片标签
            
            image_path = os.path.join(valid_set, name)
            image = load_image(image_path)
            
            # 输出数据
            batch_image.append(image)
            batch_label.append(label)
            if len(batch_image) == batch_size:
                array_image = np.array(batch_image).astype('float32')
                array_label = np.array(batch_label).astype('int64').reshape(-1, 1)
                
                yield array_image, array_label
                
                batch_image = []
                batch_label = []
        
        # 输出剩余图片
        if len(batch_image) > 0:
            array_image = np.array(batch_image).astype('float32')
            array_label = np.array(batch_label).astype('int64').reshape(-1, 1)

            yield array_image, array_label
    
    # 返回读取图片
    return reader

 

# 读取训练数据
train_set = './data/PALM-Training400/'
train_reader = train_loader(train_set, 10)

train_data = next(train_reader())
print('train_data: image shape {}, label shape:{}'.format(train_data[0].shape, train_data[1].shape))

# 读取验证数据
valid_set = './data/PALM-Validation400/'
valid_csv = './data/PM_Label_and_Fovea_Location.csv'
valid_reader = valid_loader(valid_set, valid_csv, 10)

valid_data = next(valid_reader())
print('valid_data: image shape {}, label shape:{}'.format(valid_data[0].shape, valid_data[1].shape))


模型设计

# LeNet模型
class LeNet(fluid.dygraph.Layer):
    def __init__(self):
        super(LeNet, self).__init__()
        
        # 输入: N*C*H*W=N*3*224*224, H/W=(H/W+2P-K)/S+1
        self.conv1 = Conv2D(num_channels=3, num_filters=6, filter_size=5, act='sigmoid')    # 输出: N*C*H*W=N*6*220*220
        self.pool1 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')                    # 输出: N*C*H*W=N*6*110*110
        self.conv2 = Conv2D(num_channels=6, num_filters=16, filter_size=5, act='sigmoid')   # 输出: N*C*H*W=N*16*106*106
        self.pool2 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')                    # 输出: N*C*H*W=N*16*53*53
        self.conv3 = Conv2D(num_channels=16, num_filters=120, filter_size=4, act='sigmoid') # 输出: N*C*H*W=N*120*50*50
        self.fc1 = Linear(input_dim=300000, output_dim=64, act='sigmoid')                   # 输出: N*C=N*64
        self.fc2 = Linear(input_dim=64, output_dim=2, act='softmax')                        # 输出: N*2
    
    def forward(self, image, label=None):
        x = self.conv1(image)
        x = self.pool1(x)
        x = self.conv2(x)
        x = self.pool2(x)
        x = self.conv3(x)
        x = fluid.layers.reshape(x=x, shape=[x.shape[0], -1])
        x = self.fc1(x)
        infer = self.fc2(x)
        
        if label is not None:
            accuracy = fluid.layers.accuracy(input=infer,label=label)
            return infer, accuracy
        else:
            return infer

 

# AlexNet模型
class AlexNet(fluid.dygraph.Layer):
    def __init__(self):
        super(AlexNet, self).__init__()
        
        # 输入: N*C*H*W=N*3*224*224, H/W=(H/W+2P-K)/S+1
        self.conv1 = Conv2D(num_channels=3, num_filters=96, filter_size=11, stride=4, padding=5, act='relu')   # 输出: N*C*H*W=N*96*56*56
        self.pool1 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')                                       # 输出: N*C*H*W=N*96*28*28
        self.conv2 = Conv2D(num_channels=96, num_filters=256, filter_size=5, stride=1, padding=2, act='relu')  # 输出: N*C*H*W=N*256*28*28
        self.pool2 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')                                       # 输出: N*C*H*W=N*256*14*14
        self.conv3 = Conv2D(num_channels=256, num_filters=384, filter_size=3, stride=1, padding=1, act='relu') # 输出: N*C*H*W=N*384*14*14
        self.conv4 = Conv2D(num_channels=384, num_filters=384, filter_size=3, stride=1, padding=1, act='relu') # 输出: N*C*H*W=N*384*14*14
        self.conv5 = Conv2D(num_channels=384, num_filters=256, filter_size=3, stride=1, padding=1, act='relu') # 输出: N*C*H*W=N*256*14*14
        self.pool5 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')                                       # 输出: N*C*H*W=N*256*7*7
        
        self.fc1 = Linear(input_dim=12544, output_dim=4096, act='relu') # 输出: N*C=N*4096
        self.drop_ratio1 = 0.5
        self.fc2 = Linear(input_dim=4096, output_dim=4096, act='relu')  # 输出: N*C=N*4096
        self.drop_ratio2 = 0.5
        self.fc3 = Linear(input_dim=4096, output_dim=2, act='softmax')  # 输出: N*C=N*2
    
    def forward(self, image, label=None):
        x = self.conv1(image)
        x = self.pool1(x)
        x = self.conv2(x)
        x = self.pool2(x)
        x = self.conv3(x)
        x = self.conv4(x)
        x = self.conv5(x)
        x = self.pool5(x)
        x = fluid.layers.reshape(x=x, shape=[x.shape[0], -1])
        x = self.fc1(x)
        x = fluid.layers.dropout(x=x, dropout_prob=self.drop_ratio1)
        x = self.fc2(x)
        x = fluid.layers.dropout(x=x, dropout_prob=self.drop_ratio2)
        infer = self.fc3(x)
        
        if label is not None:
            accuracy = fluid.layers.accuracy(input=infer,label=label)
            return infer, accuracy
        else:
            return infer

 

# VGGNet-16模型
class ConvBlock(fluid.dygraph.Layer):
    def __init__(self, input_dim, output_dim, conv_num):
        super(ConvBlock, self).__init__()
        
        self.conv_list = []
        for conv_id in range(conv_num):
            conv_item = self.add_sublayer(
                'conv_' + str(conv_id),
                Conv2D(num_channels=input_dim, num_filters=output_dim, filter_size=3, stride=1, padding=1, act='relu'))
            self.conv_list.append(conv_item)     
            input_dim = output_dim
            
        self.pool = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
        
    def forward(self, x):
        for conv_item in self.conv_list:
            x = conv_item(x)
            
        x = self.pool(x)
        
        return x

class VGGNet(fluid.dygraph.Layer):
    def __init__(self):
        super(VGGNet, self).__init__()
        
        # 输入: N*C*H*W=N*3*224*224, H/W=(H/W+2P-K)/S+1
        block_arch = [(3, 64, 2), (64, 128, 2), (128, 256, 3), (256, 512, 3), (512, 512, 3)] # 每组卷积的输入维度,输出维度和卷积个数
        self.block_list = [] # 卷积模块列表
        for block_id, conv_arch in enumerate(block_arch):
            block_item = self.add_sublayer(
                'block_' + str(block_id),
                ConvBlock(input_dim=conv_arch[0], output_dim=conv_arch[1], conv_num=conv_arch[2]))
            self.block_list.append(block_item)                          # 输出: N*C*H*W=N*512*7*7
        
        self.fc1 = Linear(input_dim=25088, output_dim=4096, act='relu') # 输出: N*C=N*4096
        self.drop_ratio1 = 0.5
        self.fc2 = Linear(input_dim=4096, output_dim=4096, act='relu')  # 输出: N*C=N*4096
        self.drop_ratio2 = 0.5
        self.fc3 = Linear(input_dim=4096, output_dim=2, act='softmax')  # 输出: N*C=N*2
        
    def forward(self, image, label=None):
        for block_item in self.block_list:
            image = block_item(image)
            
        x = fluid.layers.reshape(image, [image.shape[0], -1])
        x = self.fc1(x)
        x = fluid.layers.dropout(x=x, dropout_prob=self.drop_ratio1)
        x = self.fc2(x)
        x = fluid.layers.dropout(x=x, dropout_prob=self.drop_ratio2)
        infer = self.fc3(x)
        
        if label is not None:
            accuracy = fluid.layers.accuracy(input=infer,label=label)
            return infer, accuracy
        else:
            return infer

 

# GoogLeNet模型
class Inception(fluid.dygraph.Layer):
    def __init__(self, c0, c1, c2, c3, c4):
        super(Inception, self).__init__()
        
        self.p1_1 = Conv2D(num_channels=c0, num_filters=c1, filter_size=1, stride=1, padding=0, act='relu')
        
        self.p2_1 = Conv2D(num_channels=c0, num_filters=c2[0], filter_size=1, stride=1, padding=0, act='relu')
        self.p2_2 = Conv2D(num_channels=c2[0], num_filters=c2[1], filter_size=3, stride=1, padding=1, act='relu')
        
        self.p3_1 = Conv2D(num_channels=c0, num_filters=c3[0], filter_size=1, stride=1, padding=0, act='relu')
        self.p3_2 = Conv2D(num_channels=c3[0], num_filters=c3[1], filter_size=5, stride=1, padding=2, act='relu')
        
        self.p4_1 = Pool2D(pool_size=3, pool_stride=1, pool_padding=1, pool_type='max')
        self.p4_2 = Conv2D(num_channels=c0, num_filters=c4, filter_size=1, stride=1, padding=0, act='relu')
    
    def forward(self, x):
        p1 = self.p1_1(x)            # 支路1: conv(1*1)
        p2 = self.p2_2(self.p2_1(x)) # 支路2: conv(1*1)+conv(3*3)
        p3 = self.p3_2(self.p3_1(x)) # 支路3: conv(1*1)+conv(5*5)
        p4 = self.p4_2(self.p4_1(x)) # 支路4: pool(3*3)+conv(1*1)
        
        x = fluid.layers.concat([p1, p2, p3, p4], axis=1) # 合并4个支路特征图
        
        return x

class GoogLeNet(fluid.dygraph.Layer):
    def __init__(self):
        super(GoogLeNet, self).__init__()
        
        # 输入: N*C*H*W=N*3*224*224, H/W=(H/W+2P-K)/S+1
        self.conv1 = Conv2D(num_channels=3, num_filters=64, filter_size=7, stride=1, padding=3, act='relu')     # 输出: N*C*H*W=N*64*224*224
        self.pool1 = Pool2D(pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')                        # 输出: N*C*H*W=N*64*112*112
        
        self.conv2_1 = Conv2D(num_channels=64, num_filters=64, filter_size=1, stride=1, padding=0, act='relu')  # 输出: N*C*H*W=N*64*112*112
        self.conv2_2 = Conv2D(num_channels=64, num_filters=192, filter_size=3, stride=1, padding=1, act='relu') # 输出: N*C*H*W=N*64*112*112
        self.pool2 = Pool2D(pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')                        # 输出: N*C*H*W=N*64*56*56
        
        self.block3_1 = Inception(c0=192, c1=64, c2=(96, 128), c3=(16, 32), c4=32)                              # 输出: N*C*H*W=N*256*56*56
        self.block3_2 = Inception(c0=256, c1=128, c2=(128, 192), c3=(32, 96), c4=64)                            # 输出: N*C*H*W=N*480*56*56
        self.pool3 = Pool2D(pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')                        # 输出: N*C*H*W=N*64*28*28
        
        self.block4_1 = Inception(c0=480, c1=192, c2=(96, 208), c3=(16, 48), c4=64)                              # 输出: N*C*H*W=N*512*28*28
        self.block4_2 = Inception(c0=512, c1=160, c2=(112, 224), c3=(24, 64), c4=64)                             # 输出: N*C*H*W=N*512*28*28
        self.block4_3 = Inception(c0=512, c1=128, c2=(128, 256), c3=(24, 64), c4=64)                             # 输出: N*C*H*W=N*512*28*28
        self.block4_4 = Inception(c0=512, c1=112, c2=(144, 288), c3=(32, 64), c4=64)                             # 输出: N*C*H*W=N*528*28*28
        self.block4_5 = Inception(c0=528, c1=256, c2=(160, 320), c3=(32, 128), c4=128)                           # 输出: N*C*H*W=N*832*28*28
        self.pool4 = Pool2D(pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')                         # 输出: N*C*H*W=N*832*14*14
        
        self.block5_1 = Inception(c0=832, c1=256, c2=(160, 320), c3=(32, 128), c4=128)                           # 输出: N*C*H*W=N*832*7*7
        self.block5_2 = Inception(c0=832, c1=384, c2=(192, 384), c3=(48, 128), c4=128)                           # 输出: N*C*H*W=N*1024*7*7
        self.pool5 = Pool2D(global_pooling=True, pool_type='avg')                                                # 输出: N*C*H*W=N*1024*1*1
        
        self.fc = Linear(input_dim=1024, output_dim=2, act='softmax')                                            # 输出: N*C=N*2
        
    def forward(self, image, label=None):
        x = self.conv1(image)
        x = self.pool1(x)
        
        x = self.conv2_1(x)
        x = self.conv2_2(x)
        x = self.pool2(x)
        
        x = self.block3_1(x)
        x = self.block3_2(x)
        x = self.pool3(x)
        
        x = self.block4_1(x)
        x = self.block4_2(x)
        x = self.block4_3(x)
        x = self.block4_4(x)
        x = self.block4_5(x)
        x = self.pool4(x)
        
        x = self.block5_1(x)
        x = self.block5_2(x)
        x = self.pool5(x)
            
        x = fluid.layers.reshape(x, [x.shape[0], -1])
        infer = self.fc(x)
        
        if label is not None:
            accuracy = fluid.layers.accuracy(input=infer,label=label)
            return infer, accuracy
        else:
            return infer

 

# ResNet模块

# 卷积模块
class ConvBN(fluid.dygraph.Layer):
    def __init__(self, num_channels, num_filters, filter_size, stride=1, act=None):
        super(ConvBN, self).__init__()
        
        self.conv = Conv2D( # 当stride=1,padding=(filter_size - 1)/2时,输出特征图大小不变
            num_channels=num_channels, num_filters=num_filters, filter_size=filter_size,
            stride=stride, padding=(filter_size - 1)//2, act=None, bias_attr=False)
        self.batch_norm = BatchNorm(num_channels=num_filters, act=act)
    
    def forward(self, x):
        x = self.conv(x)
        x = self.batch_norm(x)
        
        return x

# 瓶颈模块
class Bottleneck(fluid.dygraph.Layer):
    def __init__(self, num_channels, num_filters, stride=1, shortcut=True):
        super(Bottleneck, self).__init__()
        
        self.conv1 = ConvBN(
            num_channels=num_channels, num_filters=num_filters, filter_size=1, act='relu')
        self.conv2 = ConvBN(
            num_channels=num_filters, num_filters=num_filters, filter_size=3, stride=stride, act='relu')
        self.conv3 = ConvBN( # 残差块的输出=num_filters * 4
            num_channels=num_filters, num_filters=num_filters * 4, filter_size=1)
        
        self.short = ConvBN( # 残差块的输出=num_filters * 4
            num_channels=num_channels, num_filters=num_filters * 4, filter_size=1, stride=stride)
        self.shortcut = shortcut # 是否使用短路路径
    
    def forward(self, x):
        conv1 = self.conv1(x)
        conv2 = self.conv2(conv1)
        conv3 = self.conv3(conv2)
        
        if self.shortcut:
            short = x # 当输入维度和输出维度相等时,使用短路路径
        else:
            short = self.short(x) # 当输入维度和输出维度不相等时,变化输入维度为输出维度
            
        y = fluid.layers.elementwise_add(x=conv3, y=short, act='relu')
        
        return y

# 残差块组
class BottleneckBlock(fluid.dygraph.Layer):
    def __init__(self, num_channels, num_filters, stride, bottleneck_num):
        super(BottleneckBlock, self).__init__()
        
        self.bottleneck_list = [] # 瓶颈模块列表
        for bottleneck_id in range(bottleneck_num):
            bottleneck_item = self.add_sublayer(
                'bottleneck_' + str(bottleneck_id),
                Bottleneck(num_channels=num_channels if bottleneck_id == 0 else (num_filters*4), # 每组残差块除第一个块外输入维度=输出维度*4
                           num_filters=num_filters,
                           stride=stride if bottleneck_id == 0 else 1, # 每组残差块除第一个块外stride=1
                           shortcut=False if bottleneck_id == 0 else True)) # 每组残差块除第一个模外shortcut=True
            self.bottleneck_list.append(bottleneck_item)
        
    def forward(self, x):
        for bottleneck_item in self.bottleneck_list:
            x = bottleneck_item(x)
        
        return x

# 残差网络
class ResNet(fluid.dygraph.Layer):
    def __init__(self):
        super(ResNet, self).__init__()
        
        # 输入: N*C*H*W=N*3*224*224, H/W=(H/W+2P-K)/S+1
        self.conv1 = ConvBN(num_channels=3, num_filters=64, filter_size=7, stride=2, act='relu') # 输出: N*C*H*W=N*64*112*112
        self.pool1 = Pool2D(pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')         # 输出: N*C*H*W=N*64*56*56
        
        # 残差模块: ResNet-50每组残差块中的瓶颈模块个数: [3,4,6,3], ResNet-101:[3,4,23,3], ResNet-152:[3,8,36,3]
        block_arch = [(64, 64, 1, 3), (256, 128, 2, 4), (512, 256, 2, 6), (1024, 512, 2, 3)] # 每组瓶颈模块的输入维度,输出维度,步幅和瓶颈模块个数
        self.block_list = [] # 残差块组列表
        for block_id, bottleneck_arch in enumerate(block_arch):
            block_item = self.add_sublayer(
                'block_' + str(block_id),
                BottleneckBlock(num_channels=bottleneck_arch[0], num_filters=bottleneck_arch[1],
                           stride=bottleneck_arch[2], bottleneck_num=bottleneck_arch[3]))
            self.block_list.append(block_item)                        # 输出: N*C*H*W=N*2048*7*7
        
        self.pool5 = Pool2D(global_pooling=True, pool_type='avg')     # 输出: N*C*H*W=N*2048*1*1
        self.fc = Linear(input_dim=2048, output_dim=2, act='softmax') # 输出: N*C=N*2
        
    def forward(self, image, label=None):
        x = self.conv1(image)
        x = self.pool1(x)
        
        for block_item in self.block_list:
            x = block_item(x)    
        x = self.pool5(x)
        
        x = fluid.layers.reshape(x, [x.shape[0], -1])
        infer = self.fc(x)
        
        if label is not None:
            accuracy = fluid.layers.accuracy(input=infer,label=label)
            return infer, accuracy
        else:
            return infer


训练配置

with fluid.dygraph.guard():
    # 声明模型
#     model = LeNet()
#     model = AlexNet()
#     model = VGGNet()
#     model = GoogLeNet()
    model = ResNet()
    
    # 准备数据
    train_set = './data/PALM-Training400/'
    train_reader = train_loader(train_set, 10)
    
    valid_set = './data/PALM-Validation400/'
    valid_csv = './data/PM_Label_and_Fovea_Location.csv'
    valid_reader = valid_loader(valid_set, valid_csv, 10)
    
    # 优化算法
    optimizer = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9, parameter_list=model.parameters())


训练过程

epoch_num = 10 # 训练周期
total_time = 0 # 训练时间
model_path = './model/iChallenge-PM' # 模型路径

# 训练模型
with fluid.dygraph.guard():
    for epoch_id in range(epoch_num):
        # 训练模型
        begin_time = time.time() # 训练开始时间
        
        model.train() # 设置训练模式
        for batch_id, train_data in enumerate(train_reader()):
            # 准备数据
            image_data, label_data = train_data
            image = fluid.dygraph.to_variable(image_data)
            label = fluid.dygraph.to_variable(label_data)

            # 前向计算
            infer = model(image)

            # 计算损失
            loss = fluid.layers.cross_entropy(infer, label)
            avg_loss = fluid.layers.mean(loss)

            # 反向传播
            avg_loss.backward() # 反向传播
            optimizer.minimize(avg_loss) # 更新权重
            model.clear_gradients() # 清除梯度
            
            # 显示结果
            if batch_id % 10 == 0:
                print("train - epoch: {}, batch: {:2d}, loss: {[0]:.6f}".format(epoch_id, batch_id, avg_loss.numpy()))
        
        end_time = time.time() # 训练结束时间
        total_time += end_time - begin_time # 训练时间
        print("train - epoch: {}, total train time: {:.3f}s".format(epoch_id, total_time))
        
        # 验证模型
        accuracy_set = [] # 准确率集
        avg_loss_set = [] # 损失值集

        model.eval() # 设置测验证模式
        for batch_id, valid_data in enumerate(valid_reader()):
            # 准备数据
            image_data, label_data = valid_data
            image = fluid.dygraph.to_variable(image_data)
            label = fluid.dygraph.to_variable(label_data)
            
            # 前向计算
            infer, accuracy = model(image, label)
            
            # 计算损失
            loss = fluid.layers.cross_entropy(infer, label)
            avg_loss = fluid.layers.mean(loss)
            
            # 保存结果
            accuracy_set.append(accuracy.numpy())
            avg_loss_set.append(avg_loss.numpy())

        # 显示结果
        print('valid - epoch: {}, loss: {:.6f}, accuracy: {:.2%}'.format(epoch_id, np.mean(avg_loss_set), np.mean(accuracy_set)))
        
# 保存模型
with fluid.dygraph.guard():
    fluid.save_dygraph(model.state_dict(), model_path)


测试模型

model_path = './model/iChallenge-PM' # 模型路径
image_path = './data/PALM-Training400/P0007.jpg' # 图片路径

with fluid.dygraph.guard():
    # 加载模型
#     model = LeNet()
#     model = AlexNet()
#     model = VGGNet()
#     model = GoogLeNet()
    model = ResNet()
    
    model.eval() # 设置测试模式
    model_dict, _ = fluid.load_dygraph(model_path)
    model.load_dict(model_dict)

    # 准备数据
    image = load_image(image_path) # 读取图片: (3,224,224)
    image = np.expand_dims(image, axis=0) # 增加维度: (1,3,224,224)
    image = fluid.dygraph.to_variable(image)

    # 前向计算
    infer = model(image)

    # 显示结果
    label = ['Normal','PM'] # 预测图像标签
    print('infer result: {}'.format( label[ np.argmax( infer.numpy() ) ] ) )
    
    image = Image.open(image_path)
    plt.imshow(image)
    plt.show()
image])[0]
                
                total_image = np.concatenate([real_images, generate_images])
                
                # 显示生成图像 
                print("Epoch: {0}, Batch: {1}, D AVG Loss: {2}, DG AVG Loss: {3}".format(epoch, batch, d_avg_loss_n, dg_avg_loss_n))
                show_image(total_image)

# 主函数
if __name__ == "__main__":
    train()


参考资料:

https://www.paddlepaddle.org.cn/tutorials/projectdetail/601037

https://aistudio.baidu.com/aistudio/projectdetail/605808

posted @ 2020-07-03 10:23  盛夏夜  阅读(739)  评论(0编辑  收藏  举报