随笔分类 - Paddle
摘要:链接: https://paddle-lite.readthedocs.io/zh/latest/source_compile/compile_env.html https://paddle-lite.readthedocs.io/zh/latest/demo_guides/x86.html htt
阅读全文
摘要:说明: 本例程使用YOLOv3进行昆虫检测。例程分为数据处理、模型设计、损失函数、训练模型、模型预测和测试模型六个部分。本篇为第六部分,保存非极大值抑制输出的结果到预测结果文件,然后通过完整插值方法计算mAP。非极大值阈值的预测得分需要设置一个低的得分,使得计算mAP时能比较更多的平均精度。 实验代
阅读全文
摘要:说明: 本例程使用YOLOv3进行昆虫检测。例程分为数据处理、模型设计、损失函数、训练模型、模型预测和测试模型六个部分。本篇为第五部分,使用非极大值抑制来消除预测出的重叠面积过大的边框,然后显示预测结果图像。 实验代码: 模型预测: import paddle.fluid as fluid from
阅读全文
摘要:说明: 本例程使用YOLOv3进行昆虫检测。例程分为数据处理、模型设计、损失函数、训练模型、模型预测和测试模型六个部分。本篇为第四部分,使用Momentum优化算法训练YOLOv3网络权重。数据集训练一轮就使用验证集计算验证损失,如果当前为最好验证损失,则保存网络权重。开始学习率如果过大,会导致损失
阅读全文
摘要:说明: 本例程使用YOLOv3进行昆虫检测。例程分为数据处理、模型设计、损失函数、训练模型、模型预测和测试模型六个部分。本篇为第三部分,设计了物体边框、物体置信度和物体类别的损失函数。物体边框的x、y使用sigmoid_cross_entropy_with_logits损失函数,w、h使用绝对值L1
阅读全文
摘要:说明: 本例程使用YOLOv3进行昆虫检测。例程分为数据处理、模型设计、损失函数、训练模型、模型预测和测试模型六个部分。本篇为第二部分,使用Paddle动态图实现了YOLOv3,使用Darknet53骨干网络和YOLOv3的检测头部。 实验代码: Darknet53骨干网络和YOLOv3头部: im
阅读全文
摘要:说明: 本例程使用YOLOv3进行昆虫检测。例程分为数据处理、模型设计、损失函数、训练模型、模型预测和测试模型六个部分。本篇为第一部分,实现了昆虫检测训练的数据预处理功能和预测和测试时读取和显示数据功能。 数据集下载地址:https://aistudio.baidu.com/aistudio/dat
阅读全文
摘要:说明: 本例程使用动态图实现的LeNet,AlexNet,VGGNet,GOOGLeNet和ResNet实现iChanglle-PM病理近视数据集的图像分类任务。 实验代码: 相关类库 import os import time import random import numpy as np im
阅读全文
摘要:说明: 生成对抗网络(Generative Adversarial Network [1],简称GAN)是非监督式学习的一种方法,通过让两个神经网络相互博弈的方式进行学习。本例程使用DCGAN网络和MNIST数据集生成数字字符。 实验代码: import paddle import paddle.f
阅读全文
摘要:说明: 本例程使用vggnet-16来进行cifar10图像分类。 实验代码: 1 import paddle 2 import paddle.fluid as fluid 3 import numpy 4 from paddle.utils.plot import Ploter 5 from PI
阅读全文
摘要:说明: 深度学习的入门教程,一般都是 MNIST 数据库上的手写识别问题。原因是手写识别属于典型的图像分类问题,比较简单,同时MNIST数据集也很完备。MNIST数据集作为一个简单的计算机视觉数据集,包含一系列如图1所示的手写数字图片和对应的标签。图片是28x28的像素矩阵,标签则对应着0~9的10
阅读全文
摘要:说明: MNIST手写数字数据集非常经典,它由60000个训练样本和10000个测试样本组成,每个样本都是一张28×28的灰度图片。直接下载下来的MNIST数据是无法通过解压或应用程序打开的,因为它里面的文件不是标准的图像格式,而是以字节的形式存储的,所以需要借助编程的手段来打开。 实验代码: 1
阅读全文
摘要:说明: 使用从UCI Housing Data Set获得的波士顿房价数据集进行模型的训练和预测。 实验代码: 静态图 1 import paddle 2 import paddle.fluid as fluid 3 from paddle.utils.plot import Ploter 4 im
阅读全文