Module.modules()和Module.children()

参考PyTorch document和discuss 
在PyTorch中,所有的neural network module都是class torch.nn.Module的子类,在Modules中可以包含其它的Modules,以一种树状结构进行嵌套。当需要返回神经网络中的各个模块时,Module.modules()方法返回网络中所有模块的一个iterator,而Module.children()方法返回所有直接子模块的一个iterator。具体而言:

list ( nn.Sequential(nn.Linear(10, 20), nn.ReLU()).modules() )
Out[9]:
[Sequential (
(0): Linear (10 -> 20)
(1): ReLU ()
), Linear (10 -> 20), ReLU ()]

In [10]: list( nn.Sequential(nn.Linear(10, 20), nn.ReLU()) .children() )
Out[10]: [Linear (10 -> 20), ReLU ()]

举例:Faster-RCNN基于vgg19提取features,但是只使用了vgg19一部分模型提取features。

步骤:

下载vgg19的pth文件,在anaconda中直接设置pretrained=True下载一般都比较慢,在model_zoo里面有各种预训练模型的下载链接:
model_urls = {
'vgg11': 'https://download.pytorch.org/models/vgg11-bbd30ac9.pth',
'vgg13': 'https://download.pytorch.org/models/vgg13-c768596a.pth',
'vgg16': 'https://download.pytorch.org/models/vgg16-397923af.pth',
'vgg19': 'https://download.pytorch.org/models/vgg19-dcbb9e9d.pth',
'vgg11_bn': 'https://download.pytorch.org/models/vgg11_bn-6002323d.pth',
'vgg13_bn': 'https://download.pytorch.org/models/vgg13_bn-abd245e5.pth',
'vgg16_bn': 'https://download.pytorch.org/models/vgg16_bn-6c64b313.pth',
'vgg19_bn': 'https://download.pytorch.org/models/vgg19_bn-c79401a0.pth'  }

下载好的模型,可以用下面这段代码看一下模型参数,并且改一下模型。在vgg19.pth同级目录建立一个test.py。

import torch
import torch.nn as nn
import torchvision.models as models

vgg16 = models.vgg16(pretrained=False)

#打印出预训练模型的参数
vgg16.load_state_dict(torch.load('vgg16-397923af.pth'))
print('vgg16:\n', vgg16) 

modified_features = nn.Sequential(*list(vgg16.features.children())[:-1])
# to relu5_3
print('modified_features:\n', modified_features )#打印修改后的模型参数

修改好之后features就可以拿去做Faster-RCNN提取特征用了。


 

本文内容主要参考:https://www.cnblogs.com/wmlj/p/9917827.html

 

posted @ 2019-03-09 17:33  车路历程  阅读(796)  评论(0编辑  收藏  举报