protagonist

灾后重建

题目背景

B地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响。但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车。换句话说,只有连接着两个重建完成的村庄的公路才能通车,只能到达重建完成的村庄。

题目描述

给出B地区的村庄数N,村庄编号从0到N1,和所有M条公路的长度,公路是双向的。并给出第ii个村庄重建完成的时间t_iti,你可以认为是同时开始重建并在第t_iti天重建完成,并且在当天即可通车。若t_iti0则说明地震未对此地区造成损坏,一开始就可以通车。之后有QQ个询问(x, y, t)(x,y,t),对于每个询问你要回答在第tt天,从村庄x到村庄y的最短路径长度为多少。如果无法找到从x村庄到y村庄的路径,经过若干个已重建完成的村庄,或者村庄x或村庄y在第t天仍未重建完成 ,则需要返回1。

输入输出格式

输入格式:

 

第一行包含两个正整数N,MN,M,表示了村庄的数目与公路的数量。

第二行包含NN个非负整数t_0, t_1,…, t_{N-1}t0,t1,,tN1,表示了每个村庄重建完成的时间,数据保证了t_0 ≤ t_1 ≤ … ≤ t_{N-1}t0t1tN1

接下来MM行,每行33个非负整数i, j, wi,j,w,ww为不超过1000010000的正整数,表示了有一条连接村庄ii与村庄jj的道路,长度为ww,保证i≠jij,且对于任意一对村庄只会存在一条道路。

接下来一行也就是M+3M+3行包含一个正整数QQ,表示QQ个询问。

接下来QQ行,每行33个非负整数x, y, tx,y,t,询问在第tt天,从村庄xx到村庄yy的最短路径长度为多少,数据保证了tt是不下降的。

 

输出格式:

 

QQ行,对每一个询问(x, y, t)(x,y,t)输出对应的答案,即在第tt天,从村庄xx到村庄yy的最短路径长度为多少。如果在第t天无法找到从xx村庄到yy村庄的路径,经过若干个已重建完成的村庄,或者村庄x或村庄yy在第tt天仍未修复完成,则输出-11。

 

输入输出样例

输入样例#1: 复制
4 5
1 2 3 4
0 2 1
2 3 1
3 1 2
2 1 4
0 3 5
4
2 0 2
0 1 2
0 1 3
0 1 4
输出样例#1: 复制
-1
-1
5
4

说明

对于30\%30%的数据,有N≤50N50;

对于30\%30%的数据,有t_i= 0ti=0,其中有20\%20%的数据有t_i = 0ti=0且N>50N>50;

对于50\%50%的数据,有Q≤100Q100;

对于100\%100%的数据,有N≤200N200,M≤N \times (N-1)/2MN×(N1)/2,Q≤50000Q50000,所有输入数据涉及整数均不超过100000100000。

Solution:Floyd,记录每一个query,判断中转点是否修好,注意要标记是否作为中转点用过,否则会TLE。

#include<bits/stdc++.h>
#define REP(i, a, b) for(int i = (a); i <= (b); ++ i)
#define REP(j, a, b) for(int j = (a); j <= (b); ++ j)
#define REP(k, a, b) for(int k = (a); k <= (b); ++ k)
#define PER(i, a, b) for(int i = (a); i >= (b); -- i)
using namespace std;
const int maxn=1e5+5;
template <class T>
inline void rd(T &ret){
    char c;
    ret = 0;
    while ((c = getchar()) < '0' || c > '9');
    while (c >= '0' && c <= '9'){
        ret = ret * 10 + (c - '0'), c = getchar();
    }
}
int tim[maxn],vis[maxn],f[maxn],to[maxn],d[maxn],g[206][206];
int main(){
    memset(g,0x7f,sizeof(g));
    int n,m;
    rd(n),rd(m);
    REP(i,0,n-1)g[i][i]=0;
    REP(i,0,n-1)rd(tim[i]);
    REP(i,1,m){
        int x,y,z;
        rd(x),rd(y),rd(z);
        g[x][y]=g[y][x]=z;
    }
    int q;
    rd(q);
    REP(i,1,q)rd(f[i]),rd(to[i]),rd(d[i]);
    for(int o=1;o<=q;o++){
        REP(k,0,n-1){
            if(tim[k]<=d[o]&&!vis[k]){
                vis[k]=1;
                REP(i,0,n-1){
                    REP(j,0,n-1){
                        if(i!=j&&j!=k&&k!=j&&g[i][k]<0x7f7f7f7f&&g[k][j]<0x7f7f7f7f){
                            g[i][j]=min(g[i][j],g[i][k]+g[k][j]);
                        }
                    }
                }
            }
        }
        if(tim[f[o]]<=d[o]&&tim[to[o]]<=d[o]&&g[f[o]][to[o]]!=0x7f7f7f7f){
             cout<<g[f[o]][to[o]]<<endl;
        }
        else{
            cout<<-1<<endl;
        }
    }
    return 0;
}

 

posted @ 2019-02-20 17:33  czy-power  阅读(155)  评论(0编辑  收藏  举报