集合
题目描述
对于从1到N (1 <= N <= 39) 的连续整数集合,能划分成两个子集合,且保证每个集合的数字和是相等的。举个例子,如果N=3,对于{1,2,3}能划分成两个子集合,每个子集合的所有数字和是相等的:
{3} 和 {1,2}
这是唯一一种分法(交换集合位置被认为是同一种划分方案,因此不会增加划分方案总数) 如果N=7,有四种方法能划分集合{1,2,3,4,5,6,7},每一种分法的子集合各数字和是相等的:
{1,6,7} 和 {2,3,4,5} {注 1+6+7=2+3+4+5}
{2,5,7} 和 {1,3,4,6}
{3,4,7} 和 {1,2,5,6}
{1,2,4,7} 和 {3,5,6}
给出N,你的程序应该输出划分方案总数,如果不存在这样的划分方案,则输出0。程序不能预存结果直接输出(不能打表)。
输入输出格式
输入格式:
输入文件只有一行,且只有一个整数N
输出格式:
输出划分方案总数,如果不存在则输出0。
输入输出样例
输入样例#1: 复制
7
输出样例#1: 复制
4
Solution:
先判断是否可能分为和相等的两部分,然后01背包,注意初始化和为0的时候方案数为1。
#include <iostream> #include <cstdio> #include <algorithm> #include <cstring> #include<bits/stdc++.h> #define REP(i, a, b) for(int i = (a); i <= (b); ++ i) #define REP(j, a, b) for(int j = (a); j <= (b); ++ j) #define PER(i, a, b) for(int i = (a); i >= (b); -- i) using ll = long long; using namespace std; const int maxn=1e5+5; template <class T> inline void rd(T &ret){ char c; ret = 0; while ((c = getchar()) < '0' || c > '9'); while (c >= '0' && c <= '9'){ ret = ret * 10 + (c - '0'), c = getchar(); } } ll dp[805]; int main(){ int n; rd(n); int d=(n+1)*n/4; dp[0]=1; if((n+1)*n/2%2){ cout<<0<<endl; return 0; } REP(i,1,n){ for(int j=d;j>=i;j--){ dp[j]+=dp[j-i]; } } cout<<dp[d]/2<<endl; return 0; }