1754.I Hate it--线段树
线段树三个主要方法的模板
import java.util.*;
public class Main {
// main
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
int tree[] = new int[1000];
int arr[] = { 0, 1, 3, 5, 7, 9, 11 };
// for (int i = 1; i < length; i++) { //存储数据
// arr[i] = sc.nextInt();
// }
create_tree(arr, tree, 0, 1, arr.length - 1); // 这里记得减1 因为arr[]是从0开始存储数据
for (int i = 0; i < tree.length; i++) {
System.out.print(tree[i] + " ");
}
System.out.println();
update(arr, tree, 0, 1, arr.length - 1, 5, 6);
for (int i = 0; i < tree.length; i++) {
System.out.print(tree[i] + " ");
}System.out.println();
System.out.println(querey(tree, arr, 0, 1, 6, 2, 5));
}
// create
public static void create_tree(int arr[], int tree[], int node, int start, int end) { // create建树方法!!!
if (start == end) { // 离散化的点进行调整!!!
tree[node] = arr[start];
} else {
int left_node = 2 * node + 1; // 0 | 1 2 | 3 4 5 6 ...........
int right_node = 2 * node + 2;
int mid = (start + end) / 2;
create_tree(arr, tree, left_node, start, mid);
create_tree(arr, tree, right_node, mid + 1, end);
tree[node] = tree[left_node] + tree[right_node]; // 核心代码
}
}
// update
public static void update(int arr[], int tree[], int node, int start, int end, int idx, int val) {
if (start == end) {
arr[start] = val;
tree[node] = val;
} else {
int left_node = 2 * node + 1; // 0 | 1 2 | 3 4 5 6 ...........
int right_node = 2 * node + 2;
int mid = (start + end) / 2;
if (idx <= mid && idx >= start) {
update(arr, tree, left_node, start, mid, idx, val);
} else if (idx <= end && idx >= mid + 1) {
update(arr, tree, right_node, mid + 1, end, idx, val);
}
tree[node] = tree[left_node] + tree[right_node]; // 核心代码
}
}
// querey
public static int querey(int tree[], int arr[], int node, int start, int end, int L, int R) {
if (R < start || end < L) { // 排除范围之外
return 0;
} else if (L <= start && end <= R)
return tree[node];
else if (start == end)
return node;
else {
int mid = (start + end) / 2;
int left_node = node * 2 + 1;
int right_node = node * 2 + 2;
int sum_left = querey(tree, arr, left_node, start, mid, L, R);
int sum_right = querey(tree, arr, right_node, mid + 1, end, L, R);
return sum_left + sum_right;
}
}
}
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner sc = new Scanner(System.in);
while (sc.hasNext()) {
int n = sc.nextInt();
int arr[] = new int[n + 1];
int num = sc.nextInt();
int tree[] = new int[(n + 5) * 4 + 1];
for (int i = 1; i <= n; i++) {
arr[i] = sc.nextInt();
}
create_tree(tree, arr, 0, 1, n);
for (int i = 0; i < num; i++) {
String s = sc.next();
int a = sc.nextInt();
int b = sc.nextInt();
if (s.equals("Q")) {
System.out.println(querey(tree, arr, 0, 1, n, a, b));
} else
update(tree, arr, 0, 1, n, a, b);
}
}
}
public static void create_tree(int tree[], int arr[], int node, int start, int end) {
if (start == end)
tree[node] = arr[start];
else {
int mid = (start + end) / 2;
int left_node = node * 2 + 1;
int right_node = node * 2 + 2;
create_tree(tree, arr, left_node, start, mid);
create_tree(tree, arr, right_node, mid + 1, end);
tree[node] = Math.max(tree[left_node], tree[right_node]);
}
}
public static void update(int tree[], int arr[], int node, int start, int end, int idx, int val) {
if (start == end) {
arr[start] = val;
tree[node] = val;
} else {
int mid = (start + end) / 2;
int left_node = node * 2 + 1;
int right_node = node * 2 + 2;
if (start <= idx && idx <= mid)
update(tree, arr, left_node, start, mid, idx, val);
else if(idx <= end && idx >= mid+1)
update(tree, arr, right_node, mid + 1, end, idx, val);
tree[node] = Math.max(tree[left_node], tree[right_node]);
}
}
public static int querey(int tree[], int arr[], int node, int start, int end, int L, int R) {
if (start > R || end < L)
return 0;
else if (start >= L && R >= end)
return tree[node];
else if (start == end)
return tree[node];
else {
int mid = (start + end) / 2;
int left_node = node * 2 + 1;
int right_node = node * 2 + 2;
int max_left = querey(tree, arr, left_node, start, mid, L, R);
int max_right = querey(tree, arr, right_node, mid + 1, end, L, R);
return Math.max(max_left, max_right);
}
}
}