热心网友小鹏

导航

1.大数据概述

1.列举Hadoop生态的各个组件及其功能、以及各个组件之间的相互关系,以图呈现并加以文字描述。

 Hadoop生态图:

  1.HDFS 分布式文件系统
  Hadoop分布式文件系统HDFS是针对谷歌分布式文件系统(Google File System,GFS)的开源实现,它是Hadoop两大核心组成部分之一,提供了在廉价服务器集群中进行大规模分布式文件存储的能力。HDFS具有很好的容错能力,并且兼容廉价的硬件设备,因此,可以以较低的成本利用现有机器实现大流量和大数据量的读写。

  HDFS采用了主从(Master/Slave)结构模型,一个HDFS集群包括一个名称节点和若干个数据节点。名称节点作为中心服务器,负责管理文件系统的命名空间及客户端对文件的访问。集群中的数据节点一般是一个节点运行一个数据节点进程,负责处理文件系统客户端的读/写请求,在名称节点的统一调度下进行数据块的创建、删除和复制等操作。

  用户在使用 HDFS 时,仍然可以像在普通文件系统中那样,使用文件名去存储和访问文件。实际上,在系统内部,一个文件会被切分成若干个数据块,这些数据块被分布存储到若干个数据节点上。当客户端需要访问一个文件时,首先把文件名发送给名称节点,名称节点根据文件名找到对应的数据块(一个文件可能包括多个数据块),再根据每个数据块信息找到实际存储各个数据块的数据节点的位置,并把数据节点位置发送给客户端,最后,客户端直接访问这些数据节点获取数据。在整个访问过程中,名称节点并不参与数据的传输。这种设计方式,使得一个文件的数据能够在不同的数据节点上实现并发访问,大大提高了数据的访问速度。

  2.MapReduce
  MapReduce 是一种分布式并行编程模型,用于大规模数据集(大于1TB)的并行运算,它将复杂的、运行于大规模集群上的并行计算过程高度抽象到两个函数:Map和Reduce。MapReduce极大方便了分布式编程工作,编程人员在不会分布式并行编程的情况下,也可以很容易将自己的程序运行在分布式系统上,完成海量数据集的计算。

  在MapReduce中,一个存储在分布式文件系统中的大规模数据集,会被切分成许多独立的小数据块,这些小数据块可以被多个Map任务并行处理。MapReduce框架会为每个Map任务输入一个数据子集,Map任务生成的结果会继续作为Reduce任务的输入,最终由Reduce任务输出最后结果,并写入分布式文件系统。

  MapReduce 设计的一个理念就是“计算向数据靠拢”,而不是“数据向计算靠拢”,因为移动数据需要大量的网络传输开销,尤其是在大规模数据环境下,这种开销尤为惊人,所以,移动计算要比移动数据更加经济。本着这个理念,在一个集群中,只要有可能,MapReduce框架就会将Map程序就近地在 HDFS 数据所在的节点运行,即将计算节点和存储节点放在一起运行,从而减少了节点间的数据移动开销。

  3.YARN
  YARN 是负责集群资源调度管理的组件。YARN 的目标就是实现“一个集群多个框架”,即在一个集群上部署一个统一的资源调度管理框架YARN,在YARN之上可以部署其他各种计算框架,比如MapReduce、Tez、Storm、Giraph、Spark、OpenMPI等,由YARN为这些计算框架提供统一的资源调度管理服务(包括 CPU、内存等资源),并且能够根据各种计算框架的负载需求,调整各自占用的资源,实现集群资源共享和资源弹性收缩。

  通过这种方式,可以实现一个集群上的不同应用负载混搭,有效提高了集群的利用率,同时,不同计算框架可以共享底层存储,在一个集群上集成多个数据集,使用多个计算框架来访问这些数据集,从而避免了数据集跨集群移动,最后,这种部署方式也大大降低了企业运维成本。

  目前,可以运行在YARN之上的计算框架包括离线批处理框架MapReduce、内存计算框架Spark、流计算框架Storm和DAG计算框架Tez等。和YARN一样提供类似功能的其他资源管理调度框架还包括Mesos、Torca、Corona、Borg等。

  4.HBase
  HBase 是针对谷歌 BigTable 的开源实现,是一个高可靠、高性能、面向列、可伸缩的分布式数据库,主要用来存储非结构化和半结构化的松散数据。HBase可以支持超大规模数据存储,它可以通过水平扩展的方式,利用廉价计算机集群处理由超过10亿行元素和数百万列元素组成的数据表。

  HBase利用MapReduce来处理HBase中的海量数据,实现高性能计算;利用 Zookeeper 作为协同服务,实现稳定服务和失败恢复;使用HDFS作为高可靠的底层存储,利用廉价集群提供海量数据存储能力,当然,HBase也可以在单机模式下使用,直接使用本地文件系统而不用 HDFS 作为底层数据存储方式,不过,为了提高数据可靠性和系统的健壮性,发挥HBase处理大量数据等功能,一般都使用HDFS作为HBase的底层数据存储方式。此外,为了方便在HBase上进行数据处理,Sqoop为HBase提供了高效、便捷的RDBMS数据导入功能,Pig和Hive为HBase提供了高层语言支持。

  5.Hive
  Hive是一个基于Hadoop的数据仓库工具,可以用于对存储在Hadoop文件中的数据集进行数据整理、特殊查询和分析处理。Hive的学习门槛比较低,因为它提供了类似于关系数据库SQL语言的查询语言——HiveQL,可以通过HiveQL语句快速实现简单的MapReduce统计,Hive自身可以自动将HiveQL语句快速转换成MapReduce任务进行运行,而不必开发专门的MapReduce应用程序,因而十分适合数据仓库的统计分析。

  6.Flume
  Flume 是 Cloudera 公司开发的一个高可用的、高可靠的、分布式的海量日志采集、聚合和传输系统。Flume支持在日志系统中定制各类数据发送方,用于收集数据;同时,Flume提供对数据进行简单处理,并写到各种数据接收方的能力。

  7.Sqoop
  Sqoop是SQL-to-Hadoop的缩写,主要用来在Hadoop和关系数据库之间交换数据,可以改进数据的互操作性。通过Sqoop,可以方便地将数据从MySQL、Oracle、PostgreSQL等关系数据库中导入Hadoop(比如导入到HDFS、HBase或Hive中),或者将数据从Hadoop导出到关系数据库,使得传统关系数据库和Hadoop之间的数据迁移变得非常方便。

2.对比Hadoop与Spark的优缺点。

  Spark是一个可用于大规模数据处理的一个通用的引擎(核心),且支持多种语言(Java、Scala、python等),而Hadoop中使用的Mapreduce也是用于大规模数据的并行处理,但计算延迟较高,实时性差,满足不了快速计算。更适合离线大规模数据处理。
Hadoop是一个生态系统,所以一般我们所说的Spark和Hadoop的对比,是指spark和Hadoop中计算框架mapreduce的对比。 Hadoop中的其他组件依然是十分优秀的。
这里我们对Mapreduce和Spark进行一个简单的对比和优缺点分析。

  1.Mapreduce操作类型较为局限
  mapreduce每次处理任务时都要将任务划分为Map和Reduce两个操作。数据操作类型较为局限,而对于实际要处理的数据中,许多数据较为复杂,难以用两个操作进行处理。而Spark提供了多种操作类型(包括Map和Reduce操作)

  2.Mapreduce IO开销大
  mapreduce在处理数据时的操作是基于磁盘处理的,包括执行时读取数据和执行完成往磁盘写入数据,非常消耗资源。而Spark是内存计算机制,在spark工作时是将处理中间结果放入内存中,避免了频繁地从磁盘中读取数据。可想而知,spark 的运算速率会远远大于mapreduce(这就好比固态硬盘和机械硬盘);

  3.Mapreduce高延迟
  mapreduce处理任务时会将计算分成一系列需要按顺序执行的处理任务,前一个任务未完成下一个任务就无法开始,而且在mapreduce处理任务时,任务衔接时由于涉及到从硬盘读取或者存储数据的操作,会产生较高的延迟。使得mapreduce无法很好地处理较为复杂且任务多的项目。而Spark的任务调度执行机制是基于有向无环图(DAG),其任务调度执行机制优于mapreduce的迭代任务运算机制。

  Spark最大的特点就是在计算数据时,将中间结果存在内存中,大大地减少了io开销,所以其更适合迭代运算数据量较大的机器学习运算之类的处理。

3.如何实现Hadoop与Spark的统一部署?

由于Hadoop生态系统中的一些组件所实现的功能,目前还是无法由Spark取代的,比如,Storm可以实现毫秒级响应的流计算,但是,Spark则无法做到毫秒级响应。另一方面,企业中已经有许多现有的应用,都是基于现有的Hadoop组件开发的,完全转移到Spark上需要一定的成本。因此,在许多企业实际应用中,Hadoop和Spark的统一部署是一种比较现实合理的选择。

由于Hadoop MapReduce、HBase、Storm和Spark等,都可以运行在资源管理框架YARN之上,因此,可以在YARN之上进行统一部署,如图:

 

posted on 2022-02-25 11:51  热心网友小鹏  阅读(31)  评论(0编辑  收藏  举报