P1447 [NOI2010]能量采集 莫比乌斯反演
P1447 [NOI2010]能量采集
莫比乌斯反演。
简化题意: $\displaystyle \sum_{i = 1}^{n} \sum_{j = 1}^{m}2(gcd(i, j) - 1) + 1 $
甩链接
化简完式子:\(-n*m +2* \displaystyle \sum_{T = 1}^{min(n, m)} \lfloor \frac{n}{T} \rfloor \lfloor \frac{m}{T} \rfloor \phi(T)\)
\(O(n)\)可做。
可以用整除分块优化一下。
一个数等于它因子的欧拉函数之和:\(n = \displaystyle \sum_{d \mid n} \phi(d)\)
#include <bits/stdc++.h>
using namespace std;
inline long long read() {
long long s = 0, f = 1; char ch;
while(!isdigit(ch = getchar())) (ch == '-') && (f = -f);
for(s = ch ^ 48;isdigit(ch = getchar()); s = (s << 1) + (s << 3) + (ch ^ 48));
return s * f;
}
const int N = 1e5 + 5;
int n, m, cnt;
long long ans, phi[N];
int prime[N], is_prime[N];
void make_phi(int x) {
phi[1] = 1;
for(int i = 2;i <= x; i++) {
if(!is_prime[i])
phi[i] = i - 1, prime[++cnt] = i;
for(int j = 1;j <= cnt && i * prime[j] <= x; j++) {
is_prime[i * prime[j]] = 1;
if(!(i % prime[j])) {
phi[i * prime[j]] = phi[i] * prime[j];
break;
}
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
for(int i = 1;i <= x; i++) phi[i] += phi[i - 1];
}
int main() {
n = read(); m = read();
int t = min(n, m);
make_phi(t);
// for(int i = 1;i <= min(n, m); i++) cout << i << " " << phi[i] << endl;
int last;
for(int i = 1;i <= t; i = last + 1) {
last = min(n / (n / i), m / (m / i));
ans += 1ll * (n / i) * (m / i) * (phi[last] - phi[i - 1]);
}
printf("%lld", 1ll * ans * 2 - 1ll * n * m);
return 0;
}