Codeforces 1437F Emotional Fishermen(思维,dp)

题意

给出数列\(a_i\),求排列\(p_i\)的数量满足

\[\frac{a_{p_i}}{max_{j=1}^{i-1}a_{p_j}} \notin (\frac{1}{2},2) \]

思路

数列可以按前缀最大值相同划分为几个连续段,不妨设第\(i\)段开头(即前缀最大值)为\(m_i\),满足\(2m_i \leq m_{i+1}\),第\(i\)段内元素\(x\)满足\(2x \leq m_i\),

于是有一个\(dp\)做法,\(dp_i\)表示当前段开头为\(a_i\),枚举上一段的开头\(a_j\),将\(a_i\)放在当前的第一个空位中,对于所有\(2a_j \leq a_i\),有序填入剩余空位中。

我们有转移方程

\[dp_i = \sum dp_j\cdot A(n-2-pre_j,pre_i-pre_j-1) \]

其中\(pre_i\)表示\(2a_j \leq a_i\) 的个数,\(n-2-pre_j\)表示剩余空位,\(-2\)去掉了\(a_i,a_j\)\(pre_i-pre_j-1\)表示当前可用的,\(-1\)去掉了\(a_j\)

代码

#include<bits/stdc++.h>
#define int long long
#define N 5005
#define mod 998244353
#define rep(i,a,n) for (int i=a;i<=n;i++)
#define per(i,a,n) for (int i=n;i>=a;i--)
#define inf 0x3f3f3f3f
#define pb push_back
#define mp make_pair
#define pii pair<int,int>
#define fi first
#define se second
#define lowbit(i) ((i)&(-i))
#define VI vector<int>
#define all(x) x.begin(),x.end()
using namespace std;
int qpow(int a,int b){
	int res = 1;
	while(b){
		if(b&1) res = (res*a)%mod;
		a = (a*a)%mod;
		b >>= 1;
	}
	return res;
}
int fac[N],inv[N];
int A(int n,int m){
	if(n<0 || m<0 || n<m) return 0;
	return (fac[n]*inv[n-m])%mod;
}
int n,a[N],pre[N],dp[N];
signed main(){
	//freopen(".in","r",stdin);
	//freopen(".out","w",stdout);
 	scanf("%lld",&n);
 	rep(i,1,n) scanf("%lld",&a[i]);
 	fac[0] = inv[0] = 1;
 	rep(i,1,n) fac[i] = (fac[i-1]*i)%mod;
 	rep(i,1,n) inv[i] = (qpow(fac[i],mod-2))%mod;
 	sort(a+1,a+n+1);
 	int p = 0;
 	rep(i,1,n){
 		while(p+1 < i && a[p+1]*2 <= a[i]) p++;
 		pre[i] = p;
 	}
 	
 	dp[0] = 1; pre[0] = -1;
 	rep(i,1,n){
 		rep(j,0,pre[i]){
 			dp[i] = (dp[i]+dp[j]*A(n-pre[j]-2,pre[i]-pre[j]-1)%mod)%mod;
 		}
 	}
 	// rep(i,1,n) printf("%lld ",dp[i]);
 	// puts("");
 	if(pre[n] != n-1) puts("0");
 	else printf("%lld",dp[n]);
	return 0;
}

事实上可以前缀和优化做到\(O(n)\)

posted @ 2020-11-24 21:02  趁着胆子小  阅读(88)  评论(0编辑  收藏  举报
//explotion effect (unabled)