15.手写数字识别-小数据集(load_digits)

1.手写数字数据集

  • from sklearn.datasets import load_digits
  • digits = load_digits()

 

 

2.图片数据预处理

  • x:归一化MinMaxScaler()
  • y:独热编码OneHotEncoder()或to_categorical

 

  • 训练集测试集划分
  • 张量结构

3.设计卷积神经网络结构

  • 绘制模型结构图,并说明设计依据。

先导入相关的包

然后设计模型结构,因为图片是(8,8)的像素规模,在池化方面,就最多能池化3次

在卷积上,可以多次卷积,我选择的(3,3)的卷积核,然后卷积的方式是same,即卷积完成后,得到和卷积前同样大小的结果。

 构建模型结果:

4.模型训练

  • model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
  • train_history = model.fit(x=X_train,y=y_train,validation_split=0.2, batch_size=300,epochs=10,verbose=2)

5.模型评价

  • model.evaluate()
  • 交叉表与交叉矩阵
  • pandas.crosstab
  • seaborn.heatmap

 观察预测值和实际值

 通过交叉矩阵观察预测值与实际值的符合情况

  通过热力图观察预测值与实际值的符合程度

 

小结:模型构建完成后,得到的精确率在96%左右,说明模型的构建还是有一定的不足,应该更加优化卷积和池化的安排,尝试不同的卷积核得到的模型

从热力图看得出来,在预测数字8的时候容易和数字1混淆,如果是实际应用中则需要加多数字8的样本,让模型能够更好的学习到数字8的特征。也能进行更好的预测。

posted @ 2020-06-11 14:03  Qing#Ci  阅读(6761)  评论(0编辑  收藏  举报