《时间地图》第2章星系和恒星的起源

如果必须用一句话来概括“在大爆炸之后都发生了些什么?”那就深深地吸上一口气,然后说:“大爆炸(宇宙的起点)发生之后,引力开始塑造着宇宙的结构,并且使温差加剧,这是100亿年后我们周围所存在的复杂事物形成的先决条件,而我们本身就是其中的一个组成部分。”也许这就是最好的回答。

恒星就像人类一样,从来都不是孤立存在的。它们聚集在我们称之为星系(galaxies)的巨大的宇宙群落中,每个星系可能拥有1000亿颗恒星。我们自身所在的星系是银河系(Milky Way)。银河系并不像那些昏暗模糊的其他星系,由于我们是从内部对其进行观察的,它看起来就像是一条流淌在夜空的明亮而苍白的河流。

星系群(group)(通常直径为几百万光年,拥有大约20个星系)和星系团(cluster)(最宽为2000万光年,包含着几百个甚至几千个星系)。星系群和星系团由于引力的作用而聚集在一起。然而还存在着更大的结构,这些构造十分巨大,随着宇宙的膨胀而不断扩展。其中包括超星系团(supercluster,最高宽度达1亿光年,大约拥有1万个星系)。而在这些更大规模中,宇宙明显是同质的。宇宙背景辐射的一致性显现了这种同质性。

目前,超星系团似乎是宇宙中可观测到的最大的有序结构。

人们已经清楚,即便超星系团在宇宙的历史中也仅仅是一个小角色。这意味着绝大部分的宇宙物质(90%或更多)是无法观测的,这些物质[称之为暗物质(dark matter)恰如其分]的确切性质至今还是一个谜。也就是说,关于宇宙绝大部分的构成,我们仍处于一无所知的尴尬境地。

在宇宙诞生后的最初几分钟内,它迅速冷却,以至于除了元素周期表中的前三个元素氢、氦和锂(在一瞬间产生)之外,其他任何质量更重或更为复杂的元素都不可能产生。在炽热且混沌的早期宇宙里,比这三种元素复杂的事物都不可能存在。

最早诞生的恒星和星系差不多就是由氢和氦构成的。它们说明我们的宇宙拥有令人惊讶的能力,可以利用非常简单的元素来构建复杂的物体。恒星一旦形成,即开始为创造包括生物体在内的更加复杂的实体铺设基础,因为在恒星炽热的核心,正进行着将氢元素与氦元素转变为周期表中的其他元素这一魔术般的过程。

大爆炸将能量与物质分离,引力又将它们重新聚集。牛顿认为任何形式的物体都会对所有其他形式的物体产生某种引力。爱因斯坦认为,引力之所以发生作用是由于巨大物体能够使时空发生弯曲。引力能够对能量和物质产生相同的作用。他又进一步巧妙地论证,证明引力能够像弯曲物体一样弯曲能量。太阳是我们所在的太阳系中体积最大也是质量最大的天体。爱因斯坦认为,太阳的巨大质量足以弯曲周围的时空,而改变经过太阳旁边的光线的轨道。该现象的最佳观测机会是在发生日食之际,这是能够看到其他恒星接近太阳的唯一时机。爱因斯坦预言,如果在日食之前拍摄太阳旁边的恒星,你将发现它们还没有运行到太阳背后前速度好像会放慢,而当它们出现在太阳的另一侧时,在离开太阳之前又会在太阳旁边盘桓一小会儿。这种现象就是由于恒星光束被太阳的质量所吸引而发生的,就好像把棍子插入水中光线会发生折射一样。在1919年的一次日食中,爱因斯坦的预言受到检验,其结果很令人吃惊,他的理论被证明是正确的。

引力对物质和能量同时施加作用,从而造就了宇宙的形态和结构。

引力可以在很大范围内发生作用,但是距离越近,引力作用越强。准确地说,两个物体之间的引力与它们的质量(的平方)成正比,与它们之间的距离(的平方)成反比。这意味着引力能够使原本两个结合得很紧密的物体更加紧密,而对相距较远的物体影响甚小。对于诸如带能粒子这一类质量较轻且移动速度较快的物体,引力甚至产生不了多少影响,所以,引力对物质的塑造,其效果要比对能量的塑造更加明显。由于引力作用效果的差别,它已经在许多不同范围内创造了大量复杂的结构。这是一个值得注意的结论,因为它说明在某些意义上、在某些范围内,引力能够暂时抵消热力学第二定律,这一基本定律似乎表明随着时间的流逝,宇宙将变得更加无序、更加简单(参见附录二)。相反,随着引力能量的释放(即引力使物体聚合在一起),宇宙变得更加有序了。引力因而成了我们宇宙秩序和范型的主要源泉之一。

宇宙早期以及星系和恒星的大部分历史,可以被认为是大爆炸所产生的使宇宙膨胀的力量和使宇宙重新聚合的引力之间相互作用的产物。在这两种力之间存在着不稳定的、动态的平衡,膨胀力在大范围内占据优势,而引力则在较小的范围内占据优势(最多不超过星系团层次)。不过,引力需要某种初始的差异性才能发生作用。如果早期宇宙具有完全平均的稠度——比方说,如果氢元素和氦元素在整个宇宙中的分布绝对均匀——那么引力除了延缓宇宙的膨胀速度之外,所起的作用将会微乎其微。宇宙将会保持均质,诸如恒星、行星等复杂物体以及人类都不可能出现。

 宇宙背景探测器(COBE)已探明,虽然宇宙背景辐射几乎是完全相同的,但其温度确有细微的差别。显然,早期宇宙的某些地区要比其他地区温度稍高,密度稍大。这些“褶皱”带来的差异性为引力发生作用创造了条件,引力放大了这些差异性,从而使得高密度的区域更为致密。大爆炸之后的10亿年中,引力造就了许多由氢元素和氦元素构成的巨大星云。这些星云可能有几个星系团那么大,它们自身所产生的引力完全抵消了宇宙的膨胀。在更大范围内,大爆炸所产生的膨胀力仍居于统治地位,因此这些巨大星云之间的距离随着时间的流逝而不断增加。

在其自身引力拉扯之下,氢原子和氦原子被更加紧密地挤压在一起,星云开始向内部塌陷。随着气体星云的收缩,一些区域变得比其他地方密度更高,塌陷得更快;就这样,原始星云分裂成不断收缩的云团,这些云团具有不同的大小,大到整个星系,小到单个恒星。引力将每块云团压缩到更小的空间内,其内部的压力不断增长。不断增长的压力致使温度不断升高,每个气态云团在塌陷的过程中都会因此逐渐升温。在体积较小、大约包含相当于数千颗恒星的物质的小块云团中,出现了密度和温度都非常高的区域;在这些宇宙托儿所的部分区域里诞生了第一批恒星。

随着中心区域的温度不断升高,其中原子的运动速度会越来越快,撞击也越来越猛烈。最终,其猛烈程度战胜了氢原子内部带正电原子核之间的电荷斥力。(这种排斥力部分取决于原子核中质子或正电荷的数量,所以这种反应最容易发生在氢原子中;原子量越大,这种反应就越不容易发生。)当温度上升到1000万摄氏度时,一对氢原子就会融合为一个拥有两个质子的氦原子。这种核反应被称为核聚变(fusion),也就是氢弹中心区域所发生的反应。根据爱因斯坦的公式E=mc2,当氢原子聚变为氦原子时,极少的物质转化成了巨大的能量,其释放的能量等于物质的质量乘以光速的平方。准确地说,当氢原子转化为氦原子时,大约会丢失0.7%的质量,我们之所以知道这一点,是因为氦原子要比合成它的氢原子轻一些。丢失的质量转化成了能量。[5]恒星就像巨大的氢弹,拥有足以“爆炸”千百万年甚至几十亿年的燃料。

聚变反应所产生的巨大热量和能量抵消了引力的作用,年轻的恒星一旦被引燃就停止了继续塌陷。恒星内部核爆炸所产生的膨胀力与引力保持平衡,控制着星核的巨大能量。恒星之所以能形成持久稳定的结构,是将物质聚集在一起的引力与聚变反应所产生的使物体分离的膨胀力之间相互妥协的结果。这种拉锯式的平衡会一直持续下去,一旦内部温度升高,恒星便开始扩张,温度逐渐下降——这又导致了恒星的收缩,这就好比空调系统中那种负反馈循环。(假如气温过高,空调开始启动,使气温再次下降。)我们从变星的脉动中可以观测到这种拉锯式平衡。但是通常而言,只要恒星存在,这种内在的相互抵消作用将会持续千百万年,甚至几十亿年。

第一批恒星的点燃是宇宙历史上一个重大的转折点,这标志着事物的复杂程度达到了新的水平,标志着新的实体按照新的规则开始运作。被引力聚集在一起的几十亿亿个原子突然形成了全新的组织结构——它可以存在千百万年甚至几十亿年。这一时刻开始于原恒星(proto-star)内部由于温度进一步微增而点燃的核聚变反应,引力所带来的能量由此转化成为热能,一个新的更为稳定的能量流系统诞生了。恒星将自身包含的原子排列为新的、可持续的组态,这种组态能够经受巨大能量流的考验而不致解体。我们知道,这便是此类临界值的标志性模式。当原本独立的实体被纳入一个更有秩序的新模式,并且由于自由能不断上升的吞吐量而结合在一起时,新的组态就突然出现了。但是,对于所有这些构造而言,结合在一起是很困难的,故而无法永存。因此,凡是达到新的复杂程度的事物,其特点就在于某种脆弱性和最终崩塌的必然性。根据热力学第二定律,所有的复杂实体最终都将消亡,但是,结构越简单,其幸存的可能性就越大,这也是恒星的寿命比人类长得多的原因。

我们的太阳以每小时80万千米的速度,大约每2.25亿年围绕银河系中心运行一周。

恒星的形成过程一直持续到今天。在银河系中,每年大约会形成10颗新的恒星。

绝大多数星系的中央具有极大的密度,以至于即使温度升高到能够启动核聚变反应,由物质与能量所构成的巨大的星云仍然在不断塌陷。在这里,引力将物质和能量挤压到几乎不复存在,从而形成黑洞(black hole)。黑洞的空间区域十分致密,以至于任何物质和能量,甚至连光都不能逃脱其引力的作用。这意味着我们不可能直接观测到它的内部究竟发生了些什么,除非进入黑洞——当然,那样我们也就不可能再回来报告我们的发现了。黑洞的密度如此巨大,假如要把我们的地球变成黑洞,那必须把它压缩成一个直径1.76厘米的圆球。

第一批类星体是由澳大利亚天文学家于1962年探测到的,这是现代天文学家所知道的最明亮的物体。它们甚至比那些最大的星系都要亮,尽管它们的体积还没有太阳系大。它们的距离也非常遥远。绝大多数距离我们超过100亿光年,最近的也在20亿光年之外。所以当我们观察类星体的时候,我们看到的是宇宙早期存在的物体。

我们所能看到的部分不会超过宇宙的10%,甚至仅为1%。利用引力的基本规律,天文学家通过研究星系的旋转方式,可大致计算出一个星系群中到底含有多少物质,此类研究显示,星系所包含的物质也许是我们所能见到的10倍。天文学家把那些看不见的物质称为暗物质。

恒星最重要的单一特征乃是它们的体积,或者是恒星形成之前的原始物质星云的体积。体积决定恒星的许多特征,包括它的亮度、温度、颜色,以及它的寿命。如果原始星云的体积小于太阳的8%,则它的中心就不可能十分致密,其温度也达不到使氢原子发生聚变的程度,这样就形成不了恒星。最多只能形成褐矮星(brown dwarf)——一种像木星般大小、光线昏暗的天体。褐矮星是介于行星与恒星之间的天体,尽管最近对褐矮星周围的物质所作的观测显示,即使它们的体积不足以发生聚变反应,但其形成过程在许多方面与恒星是相同的。另一方面,如果原始星云的体积是太阳的60—100倍,它很可能在塌陷过程中会一分为二,甚至分裂成更多的小块,从而形成恒星。

大多数恒星的体积在远远小于太阳到太阳的8倍之间,而剩下的则是太阳的8—60倍。

星云胚胎中物质的总量决定了星云的引力、收缩速度,以及星云中心的密度和热度。新星中心的热度决定了它燃尽所有可用燃料的速度。因此,体积大的恒星比体积小的恒星温度更高;尽管它们拥有更多的物质,但是它们的燃烧更快,生存更具危险性,死亡更早。体积10倍于太阳的恒星,其寿命仅仅为3000万年,而最为巨大的恒星也许只能存活几十万年。那些较小的恒星,体积从太阳的2倍直至其1/10,密度并不高,因此内核的温度也比较低。它们能够更为节俭地消耗有限的燃料。最小的恒星其寿命长达数千亿年,是当前宇宙年龄的许多倍。

 

posted @ 2020-03-31 08:43  chuyaoxin  阅读(457)  评论(0编辑  收藏  举报