洛谷P1403 [AHOI2005] 约数研究 [数论分块]
约数研究
题目描述
科学家们在Samuel星球上的探险得到了丰富的能源储备,这使得空间站中大型计算机“Samuel II”的长时间运算成为了可能。由于在去年一年的辛苦工作取得了不错的成绩,小联被允许用“Samuel II”进行数学研究。
小联最近在研究和约数有关的问题,他统计每个正数N的约数的个数,并以f(N)来表示。例如12的约数有1、2、3、4、6、12。因此f(12)=6。下表给出了一些f(N)的取值:
f(n)表示n的约数个数,现在给出n,要求求出f(1)到f(n)的总和。
输入输出格式
输入格式:
输入一行,一个整数n
输出格式:
输出一个整数,表示总和
输入输出样例
说明
【数据范围】
20%N<=5000
100%N<=1000000
分析:
没错,这是一道非常水的题,但也是一道非常好的数论分块入门题。
求$1$~$n$的约数个数的和可以转换成求包含$1$~$n$的数的个数和,所以答案就是$\sum^n_{i=1}\frac{n}{i}$。
但是如果数据范围再大点,比如$n\leq 10^{14}$?这就需要用到数论分块。
对于某几个$i$,实际上$\frac{n}{i}$的结果都是一样的,所以我们可以直接跳过这一部分,跳到某一个$j$使得$\frac{n}{j}=\frac{n}{i}+1$。这就是数论分块的基本思想。
Code:
//It is made by HolseLee on 12th Sep 2018 //Luogu.org P1403 #include<cstdio> int main() { int n,ans=0; scanf("%d",&n); for(int i=1,j; i<=n; i=j+1) { j=n/(n/i); ans+=(n/i)*(j-i+1); } printf("%d",ans); return 0; }
蒟蒻写博客不易,如果有误还请大佬们提出
如需转载,请署名作者并附上原文链接,蒟蒻非常感激
名称:HolseLee
博客地址:www.cnblogs.com/cytus
个人邮箱:1073133650@qq.com
如需转载,请署名作者并附上原文链接,蒟蒻非常感激
名称:HolseLee
博客地址:www.cnblogs.com/cytus
个人邮箱:1073133650@qq.com