tf实现一个简单的fashionmnist识别
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import datasets, layers, optimizers,Sequential,metrics
(x, y), (x_test, y_test) = datasets.fashion_mnist.load_data()
print(x.shape, y.shape)
def proprocess(x, y):
x = tf.cast(x, dtype=tf.float32) / 255.
y = tf.cast(y, dtype=tf.int32)
return x,y
batch_size = 128
db = tf.data.Dataset.from_tensor_slices((x, y))
db = db.map(proprocess).shuffle(10000).batch(batch_size)
db_test = tf.data.Dataset.from_tensor_slices((x_test, y_test))
db_test = db_test.map(proprocess).batch(batch_size)
#db_iter = iter(db)
#sample = next(db_iter)
#print(sample[0].shape, sample[1].shape)
model = Sequential([
layers.Dense(256, activation=tf.nn.relu),#[b, 784] => [b, 256]
layers.Dense(128, activation=tf.nn.relu),#[b, 256] => [b, 128]
layers.Dense(64, activation=tf.nn.relu),#[b, 128] => [b, 64]
layers.Dense(32, activation=tf.nn.relu),#[b, 64] => [b, 32]
layers.Dense(10),#[b, 32] => [b, 10]
])
model.build(input_shape=[None, 28*28])
model.summary()
optimizer = optimizers.Adam(lr=1e-3)
def main():
for epoch in range(10):
for step, (x, y) in enumerate(db):
# x = [b, 28, 28] => [b, 784]
# y = [b]
x = tf.reshape(x, [-1, 28*28])
with tf.GradientTape() as tape:
logits = model(x)
y_onehot = tf.one_hot(y, depth=10)
loss = tf.reduce_mean(tf.losses.MSE(y_onehot, logits))
loss2 = tf.losses.categorical_crossentropy(y_onehot, logits, from_logits=True)
loss2 = tf.reduce_mean(loss2)
grads = tape.gradient(loss2, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))
if step % 100 == 0:
print(epoch, step, float(loss), float(loss2))
# test
total_correct = 0
total_number = 0
for (x_t, y_t) in db_test:
x_t = tf.reshape(x_t, [-1, 28*28])
logits_test = model(x_t)
prob_test = tf.nn.softmax(logits_test, axis=1)
pred = tf.argmax(prob_test, axis=1)
correct = tf.equal(tf.cast(pred, dtype=tf.int32), y_t)
correct = tf.reduce_sum(tf.cast(correct, dtype=tf.int32))
total_correct += int(correct)
total_number += x_t.shape[0]
print("epoch, total_correct, total_number, acc", epoch, total_correct, total_number, float(total_correct/total_number))
if __name__ == '__main__':
main()
这个代码很简单.
这个代码还可使用network.complie和net.fit来进行简化。