cynorr

Learn what I touched.

  博客园  :: 首页  :: 新随笔  :: 联系 :: 订阅 订阅  :: 管理

收敛性

markov chain具有收敛性,收敛的结果只与转移矩阵有关,和初始值没有关系。
具体例子可以见 《lda数学八卦》0.4.2小节社会阶层的例子。根据这一节可以看出markov chain的两个特点:

  • 1.markov chain具有收敛性
  • 2.得到markov chain核心步骤是找到合适的转移矩阵。

Matropolis-Hastrings Algorithm

关键的两个函数:

  • q(ai, ai+1) : 决定如何从ai得到ai+1
  • α(aiai+1):决定得到的ai+1是否保留
    目的是使得at的分布收敛于π(a)

Gibbs Samplings

主要是面对多维的情况。
例如状态时含有n维的向量,每次迭代要固定n-1维向量,只对剩下的 1 维随机模拟。

注:
π(a):这是对问题建模后的分布,联合分布或者多项分布,lda里面是dirichlet分布。我们用最终要求出来的是这个分布的参数。

posted on 2015-02-03 13:27  cynorr  阅读(320)  评论(0编辑  收藏  举报