• 博客园logo
  • 会员
  • 周边
  • 众包
  • 新闻
  • 博问
  • 闪存
  • 赞助商
  • Chat2DB
    • 搜索
      所有博客
    • 搜索
      当前博客
  • 写随笔 我的博客 短消息 简洁模式
    用户头像
    我的博客 我的园子 账号设置 会员中心 简洁模式 ... 退出登录
    注册 登录

cynchanpin

  • 博客园
  • 联系
  • 订阅
  • 管理

View Post

逻辑斯蒂回归1 -- 逻辑斯蒂回归模型

声明:

         1,本篇为个人对《2012.李航.统计学习方法.pdf》的学习总结。不得用作商用。欢迎转载,但请注明出处(即:本帖地址)。

         2,因为本人在学习初始时有非常多数学知识都已忘记。所以为了弄懂当中的内容查阅了非常多资料,所以里面应该会有引用其它帖子的小部分内容。假设原作者看到能够私信我。我会将您的帖子的地址付到以下。

         3,假设有内容错误或不准确欢迎大家指正。

         4,假设能帮到你。那真是太好了。

逻辑斯蒂分布

         对于连续的随机变量X,X服从逻辑斯蒂分布是指:X具有下列分布函数和密度函数:

         分布函数:

                   (图1)

                   F(X)= p( X <= x ) = 1 / (1 + exp(-(x-u)/r))

         密度函数:

                  

                   f(x)= F`(x) = exp(-(x-u)/r) / r(1 + exp(-(x-u)/r))2

         式中:u为位置參数,r >0为形状參数。

         当中分布函数属于逻辑斯蒂函数。其图形为一条S形曲线,该曲线以(u, 1/2)为中心对称,即满足:

                   F(-x + u ) - 1/2 = -F( x - u ) + 1/2

         PS:f(x) 的推导过程:

                   对F(X) = p( X<= x ) = 1 / (1 + exp(-(x-u)/r))

                   令a = 1 +exp(-(x-u)/r)。b = -(x-u)/r

                   ∴ dF/da = -(1/ (1 + exp(-(x-u)/r))2)

                      da/db = exp(-(x-u)/r)

                      db/dx = -(1/r)

                   ∴ f(x) =dF/dx = (dF/da) * (da/db) * (db/dx) = exp(-(x-u)/r) / r(1 + exp(-(x-u)/r))2

 

二项逻辑斯蒂回归模型

         二项逻辑斯蒂回归模型是一种分类模型,使用P(Y|X)表示,形式为參数化的逻辑斯蒂分布。

         这里,随机变量X取值为实数。随机变量Y取值为1或0.

         终于,我们规定二项逻辑斯蒂回归模型的条件概率分布为:

                   P(Y=1|X)= exp(w·x + b) / (1 + exp(w·x + b))

                   P(Y=0|X)= 1 / (1 + exp(w·x + b))

         这里X∈Rn是输入。Y∈{0, 1} 是输出,w∈Rn和b∈R是參数,当中w成为权值向量,b成为偏置。

         于是二项逻辑斯蒂回归模型就是对输入实例X,求P(Y=1|X) 和P(Y=0|X) ,然后比較其大小。最后将实例分为概率较大的那一类。

         有时。为了方便。我们将w和x加以扩充,虽仍记作w,x,但其意义分别为:

                   w= (w(1), w(2), …, w(n), b),x = (x(1),x(2), …, x(n), 1)

         这时二项逻辑斯蒂回归模型例如以下:

                   P(Y=1|X)= exp(w·x) / (1 + exp(w·x))

                   P(Y=0|X)= 1 / (1 + exp(w·x))

 

         事件的几率(odds)

                  以下。我们再学习一个定义:事件的几率(odds)

                            事件的几率 = 事件发生的概率/事件不发生的概率

                  即:

                           odds= P / (1 - p)

                  在此基础上。odds的对数几率即其logit函数就是:

                            logit(p) = log(p / (1 - p))

         于是,二项逻辑斯蒂回归模型而言,X为Y=1的几率就是:

                   

         上式说明了什么呢?

         上式说明了:在逻辑斯蒂回归模型中,输出Y=1的对数几率是输入X的线性函数。

         换句话说即:输出Y=1(输出指定类别)的对数几率是由输入X的线性函数表示的模型。

         即:

                   逻辑斯蒂回归模型就是输出Y=1(输出指定类别)的对数几率是由输入X的线性函数表示的模型。

         PS:

                   ∵ 逻辑斯蒂模型满足逻辑斯蒂分布。

                   ∴ 由图1可知:

                            对P(Y=1|X) =exp(w·x + b) / (1 + exp(w·x + b))

                            w·x的值越接近 +∞,P(Y=1|X) 越接近1

                            w·x的值越接近 -∞,P(Y=1|X) 越接近0

多项逻辑斯蒂回归

         对于多项逻辑斯蒂回归。其模型为:

        

                   

posted on 2017-07-18 10:06  cynchanpin  阅读(1933)  评论(0)    收藏  举报

刷新页面返回顶部
 
博客园  ©  2004-2025
浙公网安备 33010602011771号 浙ICP备2021040463号-3