项目实战-使用PySpark处理文本多分类问题

原文链接:https://cloud.tencent.com/developer/article/1096712

在大神创作的基础上,学习了一些新知识,并加以注释。

TARGET:将旧金山犯罪记录(San Francisco Crime Description)分类到33个类目中

源代码及数据集:之后提交。

一、载入数据集data

 1 import time
 2 from pyspark.sql import SQLContext
 3 from pyspark import SparkContext
 4 # 利用spark的csv库直接载入csv格式的数据
 5 sc = SparkContext()
 6 sqlContext = SQLContext(sc)
 7 data = sqlContext.read.format('com.databricks.spark.csv').options(header='true',
 8                                                                   inferschema='true').load('train.csv')
 9 # 选10000条数据集,减少运行时间
10 data = data.sample(False, 0.01, 100)
11 print(data.count())
结果:
8703

1.1 除去与需求无关的列
1 # 除去一些不要的列,并展示前五行
2 drop_list = ['Dates', 'DayOfWeek', 'PdDistrict', 'Resolution', 'Address', 'X', 'Y']
3 data = data.select([column for column in data.columns if column not in drop_list])
4 data.show(5)

 

1.2 显示数据结构

1 # 利用printSchema()方法显示数据的结构
2 data.printSchema()

结果:

root
 |-- Category: string (nullable = true)
 |-- Descript: string (nullable = true)

1.3 查看犯罪类型最多的前20个
1 # 包含数量最多的20类犯罪
2 from pyspark.sql.functions import col
3 data.groupBy('Category').count().orderBy(col('count').desc()).show()

结果:

+--------------------+-----+
|            Category|count|
+--------------------+-----+
|       LARCENY/THEFT| 1725|
|      OTHER OFFENSES| 1230|
|        NON-CRIMINAL|  962|
|             ASSAULT|  763|
|       VEHICLE THEFT|  541|
|       DRUG/NARCOTIC|  494|
|           VANDALISM|  447|
|            WARRANTS|  406|
|            BURGLARY|  347|
|      SUSPICIOUS OCC|  295|
|      MISSING PERSON|  284|
|             ROBBERY|  225|
|               FRAUD|  159|
|     SECONDARY CODES|  124|
|FORGERY/COUNTERFE...|  109|
|         WEAPON LAWS|   86|
|            TRESPASS|   63|
|        PROSTITUTION|   59|
|  DISORDERLY CONDUCT|   54|
|         DRUNKENNESS|   52|
+--------------------+-----+
only showing top 20 rows

 1.4 查看犯罪描述最多的前20个

1 # 包含犯罪数量最多的20个描述
2 data.groupBy('Descript').count().orderBy(col('count').desc()).show()
结果:

+--------------------+-----+ | Descript|count| +--------------------+-----+ |GRAND THEFT FROM ...| 569| | LOST PROPERTY| 323| | BATTERY| 301| | STOLEN AUTOMOBILE| 262| |DRIVERS LICENSE, ...| 244| |AIDED CASE, MENTA...| 223| | WARRANT ARREST| 222| |PETTY THEFT FROM ...| 216| |SUSPICIOUS OCCURR...| 211| |MALICIOUS MISCHIE...| 184| | TRAFFIC VIOLATION| 168| |THREATS AGAINST LIFE| 154| |PETTY THEFT OF PR...| 152| | FOUND PROPERTY| 138| |MALICIOUS MISCHIE...| 138| |ENROUTE TO OUTSID...| 121| |GRAND THEFT OF PR...| 115| |MISCELLANEOUS INV...| 101| | DOMESTIC VIOLENCE| 99| | FOUND PERSON| 98| +--------------------+-----+ only showing top 20 rows

二、对犯罪描述进行分词
2.1 对Descript分词,先切分单词,再删除停用词

流程和scikit-learn版本的很相似,包含3个步骤:
1.regexTokenizer: 利用正则切分单词
2.stopwordsRemover: 移除停用词
3.countVectors: 构建词频向量

RegexTokenizer:基于正则的方式进行文档切分成单词组
inputCol: 输入字段
outputCol: 输出字段
pattern: 匹配模式,根据匹配到的内容切分单词

CountVectorizer:构建词频向量
covabSize: 限制的词频数
minDF:如果是float,则表示出现的百分比小于minDF,不会被当做关键词
如果是int,则表示出现是次数小于minDF,不会被当做关键词

 1 from pyspark.ml.feature import RegexTokenizer, StopWordsRemover, CountVectorizer
 2 from pyspark.ml.classification import LogisticRegression
 3 
 4 # 正则切分单词
 5 # inputCol:输入字段名
 6 # outputCol:输出字段名
 7 regexTokenizer = RegexTokenizer(inputCol='Descript', outputCol='words', pattern='\\W')
 8 # 停用词
 9 add_stopwords = ['http', 'https', 'amp', 'rt', 't', 'c', 'the']
10 stopwords_remover = StopWordsRemover(inputCol='words', outputCol='filtered').setStopWords(add_stopwords)
11 # 构建词频向量
12 count_vectors = CountVectorizer(inputCol='filtered', outputCol='features', vocabSize=10000, minDF=5)

 

2.2 对分词后的词频率排序,最频繁出现的设置为0

StringIndexer
StringIndexer将一列字符串label编码为一列索引号,根据label出现的频率排序,最频繁出现的label的index为0
该例子中,label会被编码成从0-32的整数,最频繁的label被编码成0

Pipeline是基于DataFrame的高层API,可以方便用户构建和调试机器学习流水线,可以使得多个机器学习算法顺序执行,达到高效的数据处理的目的。

fit():将DataFrame转换成一个Transformer的算法,将label列转化为特征向量
transform(): 将特征向量作为新列添加到DataFrame

1 from pyspark.ml import Pipeline
2 from pyspark.ml.feature import OneHotEncoder, StringIndexer, VectorAssembler
3 label_stringIdx = StringIndexer(inputCol='Category', outputCol='label')
4 pipeline = Pipeline(stages=[regexTokenizer, stopwords_remover, count_vectors, label_stringIdx])
5 # fit the pipeline to training documents
6 pipeline_fit = pipeline.fit(data)
7 dataset = pipeline_fit.transform(data)
8 dataset.show(5)

结果:

+---------------+--------------------+--------------------+--------------------+--------------------+-----+
|       Category|            Descript|               words|            filtered|            features|label|
+---------------+--------------------+--------------------+--------------------+--------------------+-----+
|  LARCENY/THEFT|GRAND THEFT FROM ...|[grand, theft, fr...|[grand, theft, fr...|(309,[0,2,3,4,6],...|  0.0|
|  VEHICLE THEFT|   STOLEN AUTOMOBILE|[stolen, automobile]|[stolen, automobile]|(309,[9,27],[1.0,...|  4.0|
|   NON-CRIMINAL|      FOUND PROPERTY|   [found, property]|   [found, property]|(309,[5,32],[1.0,...|  2.0|
|SECONDARY CODES|   JUVENILE INVOLVED|[juvenile, involved]|[juvenile, involved]|(309,[67,218],[1....| 13.0|
| OTHER OFFENSES|DRIVERS LICENSE, ...|[drivers, license...|[drivers, license...|(309,[14,23,28,30...|  1.0|
+---------------+--------------------+--------------------+--------------------+--------------------+-----+
only showing top 5 rows

三、训练/测试集划分
1 # set seed for reproducibility
2 # 数据集划分训练集和测试集,比例7:3, 设置随机种子100
3 (trainingData, testData) = dataset.randomSplit([0.7, 0.3], seed=100)
4 print('Training Dataset Count:{}'.format(trainingData.count()))
5 print('Test Dataset Count:{}'.format(testData.count()))

结果:

Training Dataset Count:6117
Test Dataset Count:2586

四、模型训练和评价
4.1 以词频作为特征,利用逻辑回归进行分类
模型在测试集上预测和打分,查看10个预测概率值最高的结果:

LogisticRegression:逻辑回归模型
maxIter:最大迭代次数
regParam:正则化参数
elasticNetParam:正则化。0:l1;1:l2

1 start_time = time.time()
2 lr = LogisticRegression(maxIter=20, regParam=0.3, elasticNetParam=0)
3 lrModel = lr.fit(trainingData)
4 predictions = lrModel.transform(testData)
5 # 过滤prediction类别为0数据集
6 predictions.filter(predictions['prediction'] == 0).select('Descript', 'Category', 'probability', 'label', 'prediction').orderBy('probability', accending=False).show(n=10, truncate=30)

结果:

+--------------------------+--------+------------------------------+-----+----------+
|                  Descript|Category|                   probability|label|prediction|
+--------------------------+--------+------------------------------+-----+----------+
|        ARSON OF A VEHICLE|   ARSON|[0.1194196587417514,0.10724...| 26.0|       0.0|
|        ARSON OF A VEHICLE|   ARSON|[0.1194196587417514,0.10724...| 26.0|       0.0|
|        ARSON OF A VEHICLE|   ARSON|[0.1194196587417514,0.10724...| 26.0|       0.0|
|           ATTEMPTED ARSON|   ARSON|[0.12978385966276762,0.1084...| 26.0|       0.0|
|     CREDIT CARD, THEFT OF|   FRAUD|[0.21637136655265077,0.0836...| 12.0|       0.0|
|     CREDIT CARD, THEFT OF|   FRAUD|[0.21637136655265077,0.0836...| 12.0|       0.0|
|     CREDIT CARD, THEFT OF|   FRAUD|[0.21637136655265077,0.0836...| 12.0|       0.0|
|     CREDIT CARD, THEFT OF|   FRAUD|[0.21637136655265077,0.0836...| 12.0|       0.0|
|     CREDIT CARD, THEFT OF|   FRAUD|[0.21637136655265077,0.0836...| 12.0|       0.0|
|ARSON OF A VACANT BUILDING|   ARSON|[0.22897903829071928,0.0980...| 26.0|       0.0|
+--------------------------+--------+------------------------------+-----+----------+
only showing top 10 rows

1 from pyspark.ml.evaluation import MulticlassClassificationEvaluator
2 # predictionCol: 预测列的名称
3 evaluator = MulticlassClassificationEvaluator(predictionCol='prediction')
4 # 预测准确率
5 print(evaluator.evaluate(predictions))
6 end_time = time.time()
7 print(end_time - start_time)

结果:

0.9641817609126011
8.245999813079834

4.2 以TF-ID作为特征,利用逻辑回归进行分类
 1 from pyspark.ml.feature import HashingTF, IDF
 2 start_time = time.time()
 3 # numFeatures: 最大特征数
 4 hashingTF = HashingTF(inputCol='filtered', outputCol='rawFeatures', numFeatures=10000)
 5 # minDocFreq:过滤的最少文档数量
 6 idf = IDF(inputCol='rawFeatures', outputCol='features', minDocFreq=5)
 7 pipeline = Pipeline(stages=[regexTokenizer, stopwords_remover, hashingTF, idf, label_stringIdx])
 8 pipeline_fit = pipeline.fit(data)
 9 dataset = pipeline_fit.transform(data)
10 (trainingData, testData) = dataset.randomSplit([0.7, 0.3], seed=100)
11 
12 lr = LogisticRegression(maxIter=20, regParam=0.3, elasticNetParam=0)
13 lr_model = lr.fit(trainingData)
14 predictions = lr_model.transform(testData)
15 predictions.filter(predictions['prediction'] == 0).select('Descript', 'Category', 'probability', 'label', 'prediction').\
16 orderBy('probability', ascending=False).show(n=10, truncate=30)

结果:

+----------------------------+-------------+------------------------------+-----+----------+
|                    Descript|     Category|                   probability|label|prediction|
+----------------------------+-------------+------------------------------+-----+----------+
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.865376337558355,0.018892...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.865376337558355,0.018892...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.865376337558355,0.018892...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.865376337558355,0.018892...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.865376337558355,0.018892...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.865376337558355,0.018892...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.865376337558355,0.018892...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.865376337558355,0.018892...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.865376337558355,0.018892...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.865376337558355,0.018892...|  0.0|       0.0|
+----------------------------+-------------+------------------------------+-----+----------+
only showing top 10 rows

 

1 evaluator = MulticlassClassificationEvaluator(predictionCol='prediction')
2 print(evaluator.evaluate(predictions))
3 end_time = time.time()
4 print(end_time - start_time)

结果:

0.9653361434618551
12.998999834060669

4.3 交叉验证
用交叉验证来优化参数,这里针对基于词频特征的逻辑回归模型进行优化
 1 from pyspark.ml.tuning import ParamGridBuilder, CrossValidator
 2 start_time = time.time()
 3 pipeline = Pipeline(stages=[regexTokenizer, stopwords_remover, count_vectors, label_stringIdx])
 4 pipeline_fit = pipeline.fit(data)
 5 (trainingData, testData) = dataset.randomSplit([0.7, 0.3], seed=100)
 6 lr = LogisticRegression(maxIter=20, regParam=0.3, elasticNetParam=0)
 7 # 为交叉验证创建参数
 8 # ParamGridBuilder:用于基于网格搜索的模型选择的参数网格的生成器
 9 # addGrid:将网格中给定参数设置为固定值
10 # parameter:正则化参数
11 # maxIter:迭代次数
12 # numFeatures:特征值
13 paramGrid = (ParamGridBuilder()
14              .addGrid(lr.regParam, [0.1, 0.3, 0.5])
15              .addGrid(lr.elasticNetParam, [0.0, 0.1, 0.2])
16              .addGrid(lr.maxIter, [10, 20, 50])
17 #              .addGrid(idf.numFeatures, [10, 100, 1000])
18              .build())
19 
20 # 创建五折交叉验证
21 # estimator:要交叉验证的估计器
22 # estimatorParamMaps:网格搜索的最优参数
23 # evaluator:评估器
24 # numFolds:交叉次数
25 cv = CrossValidator(estimator=lr,\
26                    estimatorParamMaps=paramGrid,\
27                    evaluator=evaluator,\
28                    numFolds=5)
29 cv_model = cv.fit(trainingData)
30 predictions = cv_model.transform(testData)
31 
32 # 模型评估
33 evaluator = MulticlassClassificationEvaluator(predictionCol='prediction')
34 print(evaluator.evaluate(predictions))
35 end_time = time.time()
36 print(end_time - start_time)

结果:

0.9807684755923513
368.97300004959106

4.4 朴素贝叶斯
 1 from pyspark.ml.classification import NaiveBayes
 2 start_time = time.time()
 3 # smoothing:平滑参数
 4 nb = NaiveBayes(smoothing=1)
 5 model = nb.fit(trainingData)
 6 predictions = model.transform(testData)
 7 predictions.filter(predictions['prediction'] == 0) \
 8     .select('Descript', 'Category', 'probability', 'label', 'prediction') \
 9     .orderBy('probability', ascending=False) \
10     .show(n=10, truncate=30)

结果:

+----------------------+-------------+------------------------------+-----+----------+
|              Descript|     Category|                   probability|label|prediction|
+----------------------+-------------+------------------------------+-----+----------+
|   PETTY THEFT BICYCLE|LARCENY/THEFT|[1.0,1.236977662838925E-20,...|  0.0|       0.0|
|   PETTY THEFT BICYCLE|LARCENY/THEFT|[1.0,1.236977662838925E-20,...|  0.0|       0.0|
|   PETTY THEFT BICYCLE|LARCENY/THEFT|[1.0,1.236977662838925E-20,...|  0.0|       0.0|
|GRAND THEFT PICKPOCKET|LARCENY/THEFT|[1.0,7.699728277574397E-24,...|  0.0|       0.0|
|GRAND THEFT PICKPOCKET|LARCENY/THEFT|[1.0,7.699728277574397E-24,...|  0.0|       0.0|
|GRAND THEFT PICKPOCKET|LARCENY/THEFT|[1.0,7.699728277574397E-24,...|  0.0|       0.0|
|GRAND THEFT PICKPOCKET|LARCENY/THEFT|[1.0,7.699728277574397E-24,...|  0.0|       0.0|
|GRAND THEFT PICKPOCKET|LARCENY/THEFT|[1.0,7.699728277574397E-24,...|  0.0|       0.0|
|GRAND THEFT PICKPOCKET|LARCENY/THEFT|[1.0,7.699728277574397E-24,...|  0.0|       0.0|
|GRAND THEFT PICKPOCKET|LARCENY/THEFT|[1.0,7.699728277574397E-24,...|  0.0|       0.0|
+----------------------+-------------+------------------------------+-----+----------+
only showing top 10 rows

1 evaluator = MulticlassClassificationEvaluator(predictionCol='prediction')
2 print(evaluator.evaluate(predictions))
3 end_time = time.time()
4 print(end_time - start_time)

结果:

0.977432832447723
5.371000051498413

4.5 随机森林
 1 from pyspark.ml.classification import RandomForestClassifier
 2 start_time = time.time()
 3 # numTree:训练树的个数
 4 # maxDepth:最大深度
 5 # maxBins:连续特征离散化的最大分类数
 6 rf = RandomForestClassifier(labelCol='label', \
 7                             featuresCol='features', \
 8                             numTrees=100, \
 9                             maxDepth=4, \
10                             maxBins=32)
11 # Train model with Training Data
12 rfModel = rf.fit(trainingData)
13 predictions = rfModel.transform(testData)
14 predictions.filter(predictions['prediction'] == 0) \
15     .select('Descript','Category','probability','label','prediction') \
16     .orderBy('probability', ascending=False) \
17     .show(n = 10, truncate = 30)

结果:

+----------------------------+-------------+------------------------------+-----+----------+
|                    Descript|     Category|                   probability|label|prediction|
+----------------------------+-------------+------------------------------+-----+----------+
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.33206188381818563,0.1168...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.33206188381818563,0.1168...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.33206188381818563,0.1168...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.33206188381818563,0.1168...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.33206188381818563,0.1168...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.33206188381818563,0.1168...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.33206188381818563,0.1168...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.33206188381818563,0.1168...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.33206188381818563,0.1168...|  0.0|       0.0|
|PETTY THEFT FROM LOCKED AUTO|LARCENY/THEFT|[0.33206188381818563,0.1168...|  0.0|       0.0|
+----------------------------+-------------+------------------------------+-----+----------+
only showing top 10 rows

1 evaluator = MulticlassClassificationEvaluator(predictionCol='prediction')
2 print(evaluator.evaluate(predictions))
3 end_time = time.time()
4 print(end_time - start_time)

结果:

0.27929770811242954
36.63699984550476

上面的结果可以看出:随机森林是优秀的、鲁棒的通用模型,但对于高维稀疏数据来说,并不是一个很好的选择。
明显,选择使用交叉验证的逻辑回归

但是选择交叉验证的逻辑回归时需要注意一点:由于使用了交叉验证,训练时间会过长,在实际的应用场景中要根据业务选择最合适的模型。




 

 



 

 

 





 

posted @ 2019-04-12 22:21  cymx66688  阅读(5271)  评论(0编辑  收藏  举报