MUTC 3 E - Triangle LOVE 图论/搜索

Triangle LOVE

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
Total Submission(s): 1629    Accepted Submission(s): 693


Problem Description
Recently, scientists find that there is love between any of two people. For example, between A and B, if A don’t love B, then B must love A, vice versa. And there is no possibility that two people love each other, what a crazy world!
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
  Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
 

Input
The first line contains a single integer t (1 <= t <= 15), the number of test cases.
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
 

Output
For each case, output the case number as shown and then print “Yes”, if there is a “Triangle Love” among these N people, otherwise print “No”.
Take the sample output for more details.
 

Sample Input
2 5 00100 10000 01001 11101 11000 5 01111 00000 01000 01100 01110
 

Sample Output
Case #1: Yes Case #2: No
 

Author
BJTU
 

Source
 

Recommend
zhoujiaqi2010

----------------

图论做法:

一个结论:竞赛图上只要有环,就有三元环。

搜索做法:

带上父节点直接搜= =

标准做法1:

	增量算法,充分利用“任意两点间仅有一条有向边”的性质。
	假设前面已经加入了N个点,现在来了第N+1个点。
	那么一定能将N个点分成left和right两部分,使得N+1号点到left有边,right到N+1号点右边(因为任意两点间都有边),那么,如果left的任意一个点l到right任意一个点r有边的话,那么就有答案N+1->l->r->N+1这样一个长度为3的环。
	那么每次加入N+1号点后,用O(N)的复杂度求出左边的数量leftnum,右边的数量rightnum,left的出度和leftout,left的入度和leftin。
	如果left没有一条到right的边,则一定满足:
	leftin = leftout + leftnum * rightnum(left和right任意两点右边,如果没有左到右的,那么leftnum*rightnum条边都是右到左的)
	那么,如果leftin != leftout + leftnum * rightnum,则暴力枚举左点,右点即可得到答案。
	总体复杂度O(n^2)

标准做法2:

	归结为1个条件,任何两人都有边,要么出要么入。
	对于有向三元环,我们知道找到:A->B->C->A ,B->C->A->B ,C->A->B->C 是一样的,这给0(n^2)的算法提供了基础。
        对于每次枚举i,我们在(0~i-1)的范围看下有多少个i指向的点(剩下的就是指向i的点),同时算下i指向的点的出度和。就可以知道这些 i指向的点 指向 指向i的点(剩下的点)的数目,如果 
        num * (num - 1) / 2 < sumout 那么就是被指向的点有指出去了,这样就形成了3元环。
        否则,剩下的就是更新下出度即可,继续执行下一个节点。
 

------------------

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>

using namespace std;

const int maxn=2222;

char s[maxn][maxn];

int inq[maxn];
int n;

bool top_sort()
{
    int num=n;
    queue<int>que;
    for (int i=0;i<n;i++)
        if (!inq[i]) {que.push(i);num--;}
    while (!que.empty())
    {
        int top=que.front();
        que.pop();
        for (int i=0;i<n;i++)
        {
            if (top!=i&&s[top][i]=='1')
            {
                inq[i]--;
                if (!inq[i]) {que.push(i);num--;}
            }
        }
    }
    if (num) return true;
    else return false;

}

int main()
{
    int T,cnt=0;;
    scanf("%d",&T);
    while (T--)
    {
        memset(inq,0,sizeof(inq));
        scanf("%d",&n);
        for (int i=0;i<n;i++)
        {
            scanf("%s",s[i]);
        }
        for (int i=0;i<n;i++)
            for (int j=0;j<n;j++)
                if (i!=j&&s[i][j]=='1') inq[j]++;
        bool ret=top_sort();
        printf("Case #%d: ",++cnt);
        if (ret) puts("Yes");
        else puts("No");
    }
    return 0;
}

---------------

#include <iostream>
#include <cstring>
#include <cstdio>

using namespace std;
bool v[5555]= {0};
int n;
char s[5555][5555];
bool dfs(int i,int dad)
{
    v[i]=true;
    for (int j=1; j<=n; j++)
        if (s[i][j]-'0')
        {
            if (s[j][dad]-'0') return true;
            if (!v[j]) if (dfs(j,i)) return true;
        }
    return false;
}

int main()
{
    int T;
    scanf("%d",&T);
    for (int lp=1; lp<=T; lp++)
    {
        memset(v,0,sizeof(v));
        scanf("%d",&n);
        for (int i=1; i<=n; i++)
        {
            scanf("%s",s[i]+1);
        }
        printf("Case #%d: ",lp);
        bool flag=false;
        for (int i=1; i<=n; i++)
        {
            if (!v[i])
            {
                if (dfs(i,i)){flag=true;break;}
            }
        }
        if (!flag) printf("No\n");
        else printf("Yes\n");
    }
    return 0;
}






posted on 2013-06-12 13:38  电子幼体  阅读(148)  评论(0编辑  收藏  举报

导航