MUTC 3 E - Triangle LOVE 图论/搜索
Triangle LOVE
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 1629 Accepted Submission(s): 693
Problem Description
Recently, scientists find that there is love between any of two people. For example, between A and B, if A don’t love B, then B must love A, vice versa. And there is no possibility that two people love each other, what a crazy world!
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
Input
The first line contains a single integer t (1 <= t <= 15), the number of test cases.
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
Output
For each case, output the case number as shown and then print “Yes”, if there is a “Triangle Love” among these N people, otherwise print “No”.
Take the sample output for more details.
Take the sample output for more details.
Sample Input
2 5 00100 10000 01001 11101 11000 5 01111 00000 01000 01100 01110
Sample Output
Case #1: Yes Case #2: No
Author
BJTU
Source
Recommend
zhoujiaqi2010
图论做法:
一个结论:竞赛图上只要有环,就有三元环。
搜索做法:
带上父节点直接搜= =
标准做法1:
增量算法,充分利用“任意两点间仅有一条有向边”的性质。 假设前面已经加入了N个点,现在来了第N+1个点。 那么一定能将N个点分成left和right两部分,使得N+1号点到left有边,right到N+1号点右边(因为任意两点间都有边),那么,如果left的任意一个点l到right任意一个点r有边的话,那么就有答案N+1->l->r->N+1这样一个长度为3的环。 那么每次加入N+1号点后,用O(N)的复杂度求出左边的数量leftnum,右边的数量rightnum,left的出度和leftout,left的入度和leftin。 如果left没有一条到right的边,则一定满足: leftin = leftout + leftnum * rightnum(left和right任意两点右边,如果没有左到右的,那么leftnum*rightnum条边都是右到左的) 那么,如果leftin != leftout + leftnum * rightnum,则暴力枚举左点,右点即可得到答案。 总体复杂度O(n^2)
标准做法2:
归结为1个条件,任何两人都有边,要么出要么入。 对于有向三元环,我们知道找到:A->B->C->A ,B->C->A->B ,C->A->B->C 是一样的,这给0(n^2)的算法提供了基础。 对于每次枚举i,我们在(0~i-1)的范围看下有多少个i指向的点(剩下的就是指向i的点),同时算下i指向的点的出度和。就可以知道这些 i指向的点 指向 指向i的点(剩下的点)的数目,如果 num * (num - 1) / 2 < sumout 那么就是被指向的点有指出去了,这样就形成了3元环。 否则,剩下的就是更新下出度即可,继续执行下一个节点。
------------------
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <queue> using namespace std; const int maxn=2222; char s[maxn][maxn]; int inq[maxn]; int n; bool top_sort() { int num=n; queue<int>que; for (int i=0;i<n;i++) if (!inq[i]) {que.push(i);num--;} while (!que.empty()) { int top=que.front(); que.pop(); for (int i=0;i<n;i++) { if (top!=i&&s[top][i]=='1') { inq[i]--; if (!inq[i]) {que.push(i);num--;} } } } if (num) return true; else return false; } int main() { int T,cnt=0;; scanf("%d",&T); while (T--) { memset(inq,0,sizeof(inq)); scanf("%d",&n); for (int i=0;i<n;i++) { scanf("%s",s[i]); } for (int i=0;i<n;i++) for (int j=0;j<n;j++) if (i!=j&&s[i][j]=='1') inq[j]++; bool ret=top_sort(); printf("Case #%d: ",++cnt); if (ret) puts("Yes"); else puts("No"); } return 0; }
---------------
#include <iostream> #include <cstring> #include <cstdio> using namespace std; bool v[5555]= {0}; int n; char s[5555][5555]; bool dfs(int i,int dad) { v[i]=true; for (int j=1; j<=n; j++) if (s[i][j]-'0') { if (s[j][dad]-'0') return true; if (!v[j]) if (dfs(j,i)) return true; } return false; } int main() { int T; scanf("%d",&T); for (int lp=1; lp<=T; lp++) { memset(v,0,sizeof(v)); scanf("%d",&n); for (int i=1; i<=n; i++) { scanf("%s",s[i]+1); } printf("Case #%d: ",lp); bool flag=false; for (int i=1; i<=n; i++) { if (!v[i]) { if (dfs(i,i)){flag=true;break;} } } if (!flag) printf("No\n"); else printf("Yes\n"); } return 0; }