Uva 11090 - Going in Cycle!! bellman-ford 负权环 二分
I I U P C 2 0 0 6 |
|
Problem G: Going in Cycle!! |
|
Input: standard input Output: standard output |
|
|
|
You are given a weighted directed graph with n vertices and m edges. Each cycle in the graph has a weight, which equals to sum of its edges. There are so many cycles in the graph with different weights. In this problem we want to find a cycle with the minimum mean.
|
|
Input |
|
The first line of input gives the number of cases, N. N test cases follow. Each one starts with two numbers n and m. m lines follow, each has three positive number a, b, c which means there is an edge from vertex a to b with weight of c.
|
|
Output |
|
For each test case output one line containing “Case #x: ” followed by a number that is the lowest mean cycle in graph with 2 digits after decimal place, if there is a cycle. Otherwise print “No cycle found.”.
|
|
Constraints |
|
- n ≤ 50 - a, b ≤ n - c ≤ 10000000
|
|
Sample Input |
Output for Sample Input |
2 |
Case #1: No cycle found. |
|
|
Problemsetter: Mohammad Tavakoli Ghinani Alternate Solution: Cho |
------------------------
= = 还是例题
二分
------------------------
#include <iostream> #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> #include <queue> #include <stack> #include <vector> #include <map> #include <set> using namespace std; const int maxn=111; const double esp=1e-3; struct Edge{ int from,to; double dist; }; struct BellmanFord{ int n,m; vector<Edge> edges; vector<int> G[maxn]; bool inq[maxn]; double d[maxn]; int p[maxn]; int cnt[maxn]; void init(int n){ this->n=n; for (int i=0;i<n;i++) G[i].clear(); edges.clear(); } void addedges(int from,int to,int dist) { edges.push_back((Edge){from,to,dist}); m=edges.size(); G[from].push_back(m-1); } bool negativeCycle() { queue<int> que; memset(inq,0,sizeof(inq)); memset(cnt,0,sizeof(cnt)); for (int i=0;i<n;i++){ d[i]=0; inq[i]=true; que.push(i); } while (!que.empty()){ int u=que.front();que.pop(); inq[u]=false; for (int i=0;i<G[u].size();i++){ Edge& e=edges[G[u][i]]; if (d[e.to]>d[u]+e.dist){ d[e.to]=d[u]+e.dist; p[e.to]=G[u][i];//p[e.to]=e.from; if (!inq[e.to]){ que.push(e.to); inq[e.to]=true; if (++cnt[e.to]>n) return true; } } } } return false; } }solver; bool test(double x) { for (int i=0;i<solver.m;i++) { solver.edges[i].dist-=x; } bool ret=solver.negativeCycle(); for (int i=0;i<solver.m;i++) { solver.edges[i].dist+=x; } return ret; } int main() { int T; int maxr; scanf("%d",&T); for (int cas=1;cas<=T;cas++) { int n,m; scanf("%d%d",&n,&m); solver.init(n); maxr=0; while (m--) { int u,v,w; scanf("%d%d%d",&u,&v,&w); u--;v--; maxr=max(maxr,w); solver.addedges(u,v,w); } printf("Case #%d: ",cas); if (!test(maxr+1)) printf("No cycle found.\n"); else { double l=0,r=maxr; while (r-l>esp) { double mid=l+(r-l)/2; if (test(mid)) r=mid; else l=mid; } printf("%0.2lf\n",l); } } return 0; }