hdu 1394 Minimum Inversion Number 线段树 逆序数
Minimum Inversion Number
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 6365 Accepted Submission(s): 3875
Problem Description
The inversion number of a given number sequence a1, a2, ..., an is the number of pairs (ai, aj) that satisfy i < j and ai > aj.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
For a given sequence of numbers a1, a2, ..., an, if we move the first m >= 0 numbers to the end of the seqence, we will obtain another sequence. There are totally n such sequences as the following:
a1, a2, ..., an-1, an (where m = 0 - the initial seqence)
a2, a3, ..., an, a1 (where m = 1)
a3, a4, ..., an, a1, a2 (where m = 2)
...
an, a1, a2, ..., an-1 (where m = n-1)
You are asked to write a program to find the minimum inversion number out of the above sequences.
Input
The input consists of a number of test cases. Each case consists of two lines: the first line contains a positive integer n (n <= 5000); the next line contains a permutation of the n integers from 0 to n-1.
Output
For each case, output the minimum inversion number on a single line.
Sample Input
10 1 3 6 9 0 8 5 7 4 2
Sample Output
16
看不懂怎么证的orz
【
若abcde...的逆序数为k,那么bcde...a的逆序数是多少?我们假设abcde...中小于a的个数为t , 那么大于a的个数就是n-t-1,当把a移动最右位时,原来比a
大的现在都成了a的逆序对,即逆序数增加n-t-1,但是原来比a小的构成逆序对的数,现在都变成了顺序,因此逆序对减少t ,所以新序列的逆序数为 k +=
n - t - t -1,即k += n-1-2 * t , 于是我们只要不断移位(n次),然后更新最小值就可以了
】-------------------------------------------------
#include<iostream> #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> #define N 50005 using namespace std; int num[N]; struct Tree { int l; int r; int sum; } tree[N*4]; void build(int root,int l,int r) { tree[root].l=l; tree[root].r=r; if(tree[root].l==tree[root].r) { tree[root].sum=0; return; } int mid=(l+r)/2; build(root<<1,l,mid); build(root<<1|1,mid+1,r); tree[root].sum = tree[root<<1].sum+ tree[root<<1|1].sum; } void update(int root,int pos,int val) { if(tree[root].l==tree[root].r) { tree[root].sum=val; return; } int mid=(tree[root].l+ tree[root].r)/2; if(pos<=mid) update(root<<1,pos,val); else update(root<<1|1,pos,val); tree[root].sum = tree[root<<1].sum+ tree[root<<1|1].sum; } int query(int root,int L,int R) { if(L<=tree[root].l&&R>=tree[root].r) return tree[root].sum; int mid=(tree[root].l+ tree[root].r)/2,ret=0; if(L<=mid) ret+=query(root<<1,L,R); if(R>mid) ret+=query(root<<1|1,L,R); return ret; } int x[N]; int main() { int n; int sum,ret; while (~scanf("%d",&n)) { build(1,0,n-1); sum=0; for (int i=0;i<n;i++) { scanf("%d",&x[i]); sum+=query(1,x[i],n-1); update(1,x[i],1); } ret=sum; for (int i=0;i<n;i++) { sum+=n-x[i]-x[i]-1; if (sum<ret) { ret=sum; } } printf("%d\n",ret); } return 0; }