prim算法
普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克发现;并在1957年由美国计算机科学家罗伯特·普里姆独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。
从单一顶点开始,普里姆算法按照以下步骤逐步扩大树中所含顶点的数目,直到遍及连通图的所有顶点。
- 输入:一个加权连通图,其中顶点集合为V,边集合为E;
- 初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {};
- 重复下列操作,直到Vnew = V:
- 在集合E中选取权值最小的边(u, v),其中u为集合Vnew中的元素,而v则不是(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
- 将v加入集合Vnew中,将(u, v)加入集合Enew中;
- 输出:使用集合Vnew和Enew来描述所得到的最小生成树。
procedure prim(v0:integer); var lowcost,closest:array[1..maxn] of integer; i,j,k,min,ans:integer; begin for i:=1 to n do begin lowcost[i]:=cost[v0,i]; closest[i]:=v0; end; for i:=1 to n-1 do begin min:=maxint; for j:=1 to n do if (lowcost[j]<min) and (lowcost[j]<>0) then begin min:=lowcost[j]; k:=j; end; inc(ans, lowcost[k]); lowcost[k]:=0; for j:=1 to n do if cost[k,j]<lowcost[j] then begin lowcost[j]:=cost[k,j]; closest[j]:=k; end; end; writeln(ans); end;------------------------------------------------------------------------
for (int loop=1;loop<=n;loop++) { mind=OO; for (int i=1;i<=n;i++) { if (!v[i]&&d[i]<mind) { mind=d[i]; t=i; } } v[t]=true; ans+=mind; for (int i=1;i<=n;i++) { if (a[t][i]<d[i]) { d[i]=a[t][i]; } } }