prim算法

普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点,且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克发现;并在1957年由美国计算机科学家罗伯特·普里姆独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。

从单一顶点开始,普里姆算法按照以下步骤逐步扩大树中所含顶点的数目,直到遍及连通图的所有顶点。

  1. 输入:一个加权连通图,其中顶点集合为V,边集合为E;
  2. 初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {};
  3. 重复下列操作,直到Vnew = V:
    1. 在集合E中选取权值最小的边(u, v),其中u为集合Vnew中的元素,而v则不是(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);
    2. 将v加入集合Vnew中,将(u, v)加入集合Enew中;
  4. 输出:使用集合Vnew和Enew来描述所得到的最小生成树。

procedure prim(v0:integer);
var
   lowcost,closest:array[1..maxn] of integer;
   i,j,k,min,ans:integer;
begin
   for i:=1 to n do
    begin
     lowcost[i]:=cost[v0,i];
     closest[i]:=v0;
   end;
   for i:=1 to n-1 do
     begin
      min:=maxint;
      for j:=1 to n do
         if (lowcost[j]<min) and (lowcost[j]<>0) then
          begin
            min:=lowcost[j];
            k:=j;
         end;
      inc(ans, lowcost[k]);
      lowcost[k]:=0;
      for j:=1 to n do
         if cost[k,j]<lowcost[j] then
          begin
            lowcost[j]:=cost[k,j];
            closest[j]:=k;
         end;
   end;
 writeln(ans);
end;
------------------------------------------------------------------------
        for (int loop=1;loop<=n;loop++)
        {
            mind=OO;
            for (int i=1;i<=n;i++)
            {
                if (!v[i]&&d[i]<mind)
                {
                    mind=d[i];
                    t=i;
                }
            }
            v[t]=true;
            ans+=mind;
            for (int i=1;i<=n;i++)
            {
                if (a[t][i]<d[i])
                {
                    d[i]=a[t][i];
                }
            }
        }


posted on 2013-02-01 11:07  电子幼体  阅读(223)  评论(0编辑  收藏  举报

导航