BZOJ 1874 取石子游戏 - SG函数
Description
$N$堆石子, $M$种取石子的方式, 最后取石子的人赢, 问先手是否必胜
$A_i <= 1000$,$ B_i <= 10$
Solution
由于数据很小, 直接暴力求SG函数即可判断。
Code
1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 #define rd read() 5 using namespace std; 6 7 const int N = 1e3 + 5; 8 9 int n, m, a[105], b[N]; 10 int SG[N], S[105]; 11 12 int read() { 13 int X = 0, p = 1; char c = getchar(); 14 for(;c > '9' || c < '0'; c = getchar()) if(c == '-') p = -1; 15 for(; c >= '0' && c <= '9'; c = getchar()) X = X * 10 + c - '0'; 16 return X * p; 17 } 18 19 void init() { 20 for(int i = 0; i <= 1000; ++i) { 21 int tmp = 0; 22 memset(S, 0, sizeof(S)); 23 for(int j = 1; j <= m && b[j] <= i; ++j) 24 S[SG[i - b[j]]] = 1; 25 for(; S[tmp]; ++tmp); 26 SG[i] = tmp; 27 } 28 } 29 30 int main() 31 { 32 n = rd; 33 for(int i = 1; i <= n; ++i) 34 a[i] = rd; 35 m = rd; 36 for(int i = 1; i <= m; ++i) 37 b[i] = rd; 38 init(); 39 int ans = 0; 40 for(int i = 1; i <= n; ++i) 41 ans ^= SG[a[i]]; 42 if(ans) printf("YES\n"); 43 else return printf("NO\n"), 0; 44 for(int i = 1; i <= n; ++i) { 45 int tmp = ans ^ SG[a[i]]; 46 for(int j = 1; j <= m && b[j] <= a[i]; ++j) 47 if((tmp ^ SG[a[i] - b[j]]) == 0) 48 return printf("%d %d\n", i, b[j]); 49 } 50 }