CSP前模板复习
Tarjan 求强连通分量
展开查看
#include
#include
#include
using namespace std;
const int N = 1e4 + 1e3;
int n, m, cnt, dfn[N], low[N], inq[N];
int stk[N], tp, c[N], cnt_c, sz[N];
vector ed[N], ed_c[N];
void tarjan(int u) {
inq[u] = 1;
stk[++tp] = u;
dfn[u] = low[u] = ++cnt;
for (int i = 0, up = ed[u].size(); i < up; ++i) {
if (!dfn[ed[u][i]]) {
tarjan(ed[u][i]);
low[u] = min(low[u], low[ed[u][i]]);
}
else if (inq[ed[u][i]])
low[u] = min(low[u], low[ed[u][i]]);
}
if (dfn[u] == low[u]) {
++cnt_c;
while (1) {
c[stk[tp]] = cnt_c;
inq[stk[tp]] = 0;
sz[cnt_c]++;
tp--;
if (stk[tp + 1] == u) break;
}
}
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; ++i) {
int u, v;
scanf("%d%d", &u, &v);
ed[u].push_back(v);
}
for (int i = 1; i <= n; ++i)
if (!dfn[i]) tarjan(i);
for (int i = 1; i <= n; ++i) {
for (int j = 0, up = ed[i].size(); j < up; ++j) {
if (c[i] != c[ed[i][j]]) {
ed_c[c[i]].push_back(c[ed[i][j]]);
}
}
}
int flag =0, ans = 0;
for (int i = 1; i <= cnt_c; ++i) {
if (!ed_c[i].size()) flag++, ans = sz[i];
}
if (flag > 1) return puts("0"), 0;
printf("%d\n", ans);
}
Tarjan 求点双联通分量
点击展开
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <vector>
using namespace std;
const int N = 1e5 + 5;
int dfn[N], low[N], cnt, n, m;
int stk[N], tp, root, cut[N], cnt_DCC;
vector<int> ed[N], cut_node, DCC[N];
void tarjan(int u) {
int flag = 0;
dfn[u] = low[u] = ++ cnt;
stk[++tp] = u;
for (int i = 0, up = ed[u].size(); i < up; ++i) {
if (!dfn[ed[u][i]]) {
tarjan(ed[u][i]);
low[u] = min(low[u], low[ed[u][i]]);
if (low[ed[u][i]] >= dfn[u]) {
++flag;
if (root != u || flag > 1) {
cut[u] = 1;
}
++cnt_DCC;
while (1) {
DCC[cnt_DCC].push_back(stk[tp]);
tp--;
if (stk[tp + 1] == ed[u][i])
break;
}
DCC[cnt_DCC].push_back(u);
}
}
else
low[u] = min(low[u], dfn[ed[u][i]]);
}
}
int main()
{
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; ++i) {
int u, v;
scanf("%d%d", &u, &v);
ed[u].push_back(v);
ed[v].push_back(u);
}
for (int i = 1; i <= n; ++i) if (!dfn[i])
tarjan(root = i);
for (int i = 1; i <= n; ++i)
if (cut[i]) cut_node.push_back(i);
printf("%d\n", (int)cut_node.size());
for (int i = 0, up = cut_node.size(); i < up; ++i)
printf("%d ", cut_node[i]);
puts("");
for (int i = 1; i <= cnt_DCC; ++i) {
printf("e-DCC %d ", i);
for (int j = 0, up = DCC[i].size(); j < up; ++j)
printf("%d ", DCC[i][j]);
puts("");
}
}
SPFA
展开
#include <iostream>
#include <cstdio>size=
#include <algorithm>
#include <cstring>
#include <queue>
using namespace std;
typedef long long LL;
const int N = 1e4 + 5, M = 1e6;
int head[N], tot, n, m, S, vis[N];
LL dis[N];
queue<int> que;
struct edge {
int nxt, to, w;
}e[M];
void add(int u, int v, int w) {
e[++tot].nxt = head[u];
e[tot].to = v;
e[tot].w = w;
head[u] = tot;
}
void SPFA() {
dis[S] = 0;
que.push(S);
for (int u; !que.empty(); ) {
u = que.front(); que.pop();
vis[u] = 0;
for (int i = head[u]; i; i = e[i].nxt) {
int nt = e[i].to;
if (dis[nt] > dis[u] + e[i].w) {
dis[nt] = dis[u] + e[i].w;
if (!vis[nt]) que.push(nt), vis[nt] = 1;
}
}
}
}
int main()
{
scanf("%d%d%d", &n, &m, &S);
for (int i = 1; i <= m; ++i) {
int u, v, w;
scanf("%d%d%d", &u, &v, &w);
add(u, v, w);
}
memset(dis, 120, sizeof(dis));
SPFA();
for (int i = 1; i <= n; ++i) {
if (dis[i] == dis[0])
printf("%lld ", 2147483647LL);
else printf("%lld ", dis[i]);
}
}