cychester

Codeforces 1086D Rock-Paper-Scissors Champion

Description

\(N\) 个人排成一排, 每个人都事先决定出剪刀、石头、布。

每次可以任意选两个相邻的人进行决斗。 规则和游戏一样。

但是如果平局, 则掷硬币来决定胜负。 输的人下场。

现要求出有几个人 有获胜的可能(即可以任意决定决斗的顺序 和 掷出的硬币)

Solution

一个很显然的结论: 一个人要想获胜, 两边都要满足其中一个条件, 以左边为例:

左边没有能赢他的人, 或者 左边存在一个他能赢的人即可。

根据这个结论, 我们分别计算出剪刀 、石头、 布的人有多少人能赢。

以计算出剪刀有多少人能赢为例, 先找出最先出布的人和最后出布的人, 这两个人中间的人都可以赢, 记入贡献

然后再剩余出剪刀的人 左边没有人出石头 和 右边没有人出石头的人的个数。

\(Bit\)\(Set\) 可以\(O(logN)\)计算。

Code

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<vector>
#include<set>
#define up(a, b) (a = a > b ? a : b)
#define down(a, b) (a = a > b ? b : a)
#define cmax(a, b) (a > b ? a : b)
#define cmin(a, b) (a > b ? b : a)
#define Abs(a) ((a) > 0 ? (a) : -(a))
#define lowbit(x) ((x) & -(x))
#define rd read()
#define db double
#define LL long long
using namespace std;
typedef pair<int, int> P;

/*
inline char nc(){
    static char buf[1<<14],*p1=buf,*p2=buf;
    return (p1==p2)&&(p2=(p1=buf)+fread(buf,1,1<<14,stdin),p1==p2)?EOF:*p1++;
}
inline LL read(){
    char c=nc();LL x=0,f=1;
    while(c<'0'||c>'9'){if(c=='-')f=-1;c=nc();}
    while(c>='0'&&c<='9'){x=x*10+c-'0',c=nc();}
    return x*f;
}
*/


int read() {
	int X = 0, p = 1; char c = getchar();
	for (; c > '9' || c < '0'; c = getchar())
		if (c == '-') p = -1;
	for (; c >= '0' && c <= '9'; c = getchar())
		X = X * 10 + c - '0';
	return X * p;
}

const int N = 2e5 + 5;

int n, m, sum[4][N];
char s[N];
set<int> S[4];

int ch(char c) {
	if (c == 'R')
		return 0;
	if (c == 'P')
		return 1;
	if (c == 'S')
		return 2;
}

void add(int x, int d, int *p) {
	for (; x <= n; x += lowbit(x))
		p[x] += d;
}

int query(int x, int *p) {
	if (x < 0) return 0;
	int res = 0;
	for (; x; x -= lowbit(x))
		res += p[x];
	return res;
}

int work(int x) {
	int y = (x + 2) % 3; //x > y
	int z = (x + 1) % 3; //z > x 
	int res = 0;
	if (!S[y].size()) {
		if (S[z].size())
			return 0;
		else return n;
	}
	int l = *(S[y].begin()), r = *(--S[y].end());
	if (S[y].size() > 1) 
		res += query(r, sum[x]) - query(l - 1, sum[x]);
	int tmp = S[z].size() ? *(S[z].begin()) : n + 1;
	down(tmp, l);
	res += query(tmp, sum[x]);

	tmp = S[z].size() ? *(--S[z].end()) : 0;
	up(tmp, r);
	res += query(n, sum[x]) - query(tmp - 1, sum[x]);
	return res;
}

int main()
{
	n = rd; m = rd;
	scanf("%s", s + 1);
	for (int i = 1; i <= n; ++i) {
		add(i, 1, sum[ch(s[i])]);
		S[ch(s[i])].insert(i);
	}
	printf("%d\n", work(0) + work(1) + work(2));
	for (int i = 1; i <= m; ++i) {
		int x = rd; char c = getchar();
		for (; !(c == 'R' || c == 'P' || c == 'S');)
			c = getchar();
		S[ch(s[x])].erase(x); add(x, -1, sum[ch(s[x])]);
		s[x] = c;
		S[ch(s[x])].insert(x); add(x, 1, sum[ch(s[x])]);
		printf("%d\n", work(0) + work(1) + work(2));
	}
}

posted on 2018-12-28 20:21  cychester  阅读(191)  评论(0编辑  收藏  举报

导航