摘要:
主要的聚类算法可以划分为如下几类:基于划分方法、基于层次方法、基于密度的方法、基于网格的方法以及基于模型的方法。目前在许多领域都得到了广泛的研究和成功的应用,如用于模式识别、数据分析、图像处理、市场研究、客户分割、Web文档分类等。常用的有k-means聚类算法、凝聚型层次聚类算法、神经网络聚类算法 阅读全文
摘要:
先来说一下这几者之间的关系:人工智能包含机器学习,机器学习包含深度学习(是其中比较重要的分支)。深度学习源自于人工神经网络的研究,但是并不完全等于传统神经网络。所以深度学习可以说是在传统神经网络基础上的升级。神经网络一般有输入层->隐藏层->输出层,一般来说隐藏层大于2的神经网络就叫做深度神经网络, 阅读全文
摘要:
1、什么是 softmax 机器学习总归是要接触到 softmax 的,那么这个东东倒底是怎么来的呢?对于熟悉机器学习或神经网络的读者来说,sigmoid与softmax两个激活函数并不陌生,但这两个激活函数在逻辑回归中应用,也是面试和笔试会问到的一些内容,掌握好这两个激活函数及其衍生的能力是很基础 阅读全文
摘要:
在计算推荐对象的内容特征和用户模型中兴趣特征二者之间的相似性是推荐算法中一个关键部分 ,相似性的度量可以通过计算距离来实现 在做很多研究问题时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance)。采用什么 阅读全文