Sigmoid和Softmax和Softplus

1、什么是 softmax

机器学习总归是要接触到 softmax 的,那么这个东东倒底是怎么来的呢?对于熟悉机器学习或神经网络的读者来说,sigmoid与softmax两个激活函数并不陌生,但这两个激活函数在逻辑回归中应用,也是面试和笔试会问到的一些内容,掌握好这两个激活函数及其衍生的能力是很基础且重要的,下面为大家介绍下这两类激活函数。当然激活函数不仅仅是以上两种,还有线性函数,tanh函数,hard  tanh函数,修正线性函数(Leaky ReLU,softpus(ReLU的平滑版本))----更多见Deep Learning:A Practitioner's Approach中文版

1.1. softmax function

这函数定义比较符合 softmax 这个名字:

可见 softmax function 是从一个输入序列里算出一个值。

可见 softmax 确实会返回输入序列中最大的那个值的近似值。softmax 是对真 max 函数的近似,softmax 的函数曲线是光滑的(处处可微分),而 max(0,x) 之类的函数则会有折点。

上图(图片来源网络)显示了softmax函数的基本属性,输入值越大,其概率越高。

在机器学习领域,多分类算法需要从一组可能的结果中找出概率最高的那个,正需要使用 max 函数。而为了能进行优化,用于描述问题的函数必须是可微分的,这样 softmax 就是一个非常合适的选择了。

1.2. softmax activation function

这是机器学习领域广为使用的一个函数,也叫 归一化指数函数,它的定义是:

可见 softmax activation function 返回的是一个序列,这个函数的分母部分跟 softmax function 有一部分是相同的,并且在效果上也有一点儿相似:通过运算会扩大最大项的优势并抑制序列中其余的项

1.3.历史

能在互联网上查到的记录显示,1989 年 John S. Bridle 在论文“Probabilistic Interpretation of Feedforward Classification Network Outputs, with relationships to statistical pattern recognition” 中首次引入了 softmax activation function 。这位 2013 年加入苹果至今,在搞 Siri 。

1.4.softmax activation function 的特性和应用

这个函数能够将输入序列的每一个值挤压到[0,1]范围内,并且所有项的和为1。因为这个特性,概率论用它的输出结果表达类别分布。

*-*:softmax函数的本质就是将一个K维的任意实数向量压缩(映射)成另一个K维的实数向量,其中向量中的每个元素取值都介于(0,1)之间。

在机器学习领域也用它来整理分类算法的结果,multinomial logistic regression (多元逻辑回归)、Linear discriminant analysis(线性判别分析)、naive Bayes classifiers(朴素贝叶斯分类器)、人工神经网络都可以用。

2、Sigmoid和Softmax用于分类

设计模型执行分类任务(如对胸部X光检查到的疾病或手写数字进行分类)时,有时需要同时选择多个答案(如同时选择肺炎和脓肿),有时只能选择一个答案(如数字“8”)。下面将讨论如何应用Sigmoid函数或Softmax函数处理分类器的原始输出值。

2.1神经网络分类器

分类算法有很多种,但本文讨论的内容只限于神经网络分类器。分类问题可通过不同神经网络进行解决,如前馈神经网络和卷积神经网络。

2.2应用Sigmoid函数或Softmax函数

神经网络分类器最终结果为某一向量,即“原始输出值”,如[-0.5, 1.2, -0.1, 2.4],这四个输出值分别对应胸部X光检查后发现的肺炎、心脏肥大、瘤和脓肿。但这些原始输出值是什么意思?

将输出值转换为概率可能更容易理解。比起看似随意的“2.4”,患有糖尿病的可能性为91%,这种说法更便于患者理解。

Sigmoid函数或Softmax函数可以将分类器的原始输出值映射为概率。(一般根据神经网络设置最终输出是实值输出则为回归,输出一组概率则为分类)

下图显示了将前馈神经网络的原始输出值(蓝色)通过Sigmoid函数映射为概率(红色)的过程:

然后采用Softmax函数重复上述过程:

如图所示,Sigmoid函数和Softmax函数得出不同结果。

原因在于,Sigmoid函数会分别处理各个原始输出值,因此其结果相互独立,概率总和不一定为1,如图0.37 + 0.77 + 0.48 + 0.91 = 2.53。

相反,Softmax函数的输出值相互关联,其概率的总和始终为1,如图0.04 + 0.21 + 0.05 + 0.70 = 1.00。因此,在Softmax函数中,为增大某一类别的概率,其他类别的概率必须相应减少。

3、Sigmoid函数应用:

3.1以胸部X光检查和入院为例

胸部X光片:一张胸部X光片能够同时显示多种疾病,因此胸部X射线分类器也需要同时显示多种病征。下图为一张显示肺炎和脓肿的胸部X光片,在右侧的标签栏中有两个“1”:

入院:目标是根据患者的健康档案,判断该患者将来入院的可能性。因此,分类问题可设计为:根据诊断可能导致患者未来入院的病症(如果有的话),对该患者现有的健康档案进行分类。导致患者入院的疾病可能有多种,因此答案可能有多个。

图表:下面两个前馈神经网络分别对应上述问题。在最后计算中,由Sigmoid函数处理原始输出值,得出相应概率,允许多种可能性并存——因胸部X射线可能反映出多种异常状态,则患者入院的病因可能不止一种。

4.Softmax函数应用:

4.1以手写数字和Iris(鸢尾花)为例

手写数字:在区别手写数字时,分类器应采用Softmax函数,明确数字为哪一类。毕竟,数字8只能是数字8,不能同时是数字7。

Iris:Iris数据集于1936年引入,一共包含150个数据集,分为山鸢尾、杂色鸢尾、维吉尼亚鸢尾3类,每类各有50个数据集,每个数据包含花萼长度、花萼宽度、花瓣长度、花瓣宽度4个属性。

以下9个示例摘自Iris数据集:

数据集中没有任何图像,但下图的杂色鸢尾,可供你欣赏:

Iris数据集的神经网络分类器,要采用Softmax函数处理原始输出值,因为一朵鸢尾花只能是某一个特定品种——将其分为几个品种毫无意义。

4.2关于“e”的注解

要理解Sigmoid和Softmax函数,应先引入 “e”。在本文中,只需了解e是约等于2.71828的数学常数。

下面是关于e的其他信息:

e的十进制表示永远存在,数字出现完全随机——类似于pi。

e常用于复利、赌博和某些概率分布的研究中。

下面是e的一个公式:

但e的公式不止一个。其计算方法有多种。

2004年,谷歌公司首次公开募股达2,718,281,828美元,即“e百万美元”。

维基百科中人类历史上著名的十进制数字e的演变,从1690年的一位数字开始,持续到1978年的116,000位数字:

5.Sigmoid函数和Softmax函数

5.1Sigmoid =多标签分类问题=多个正确答案=非独占输出(例如胸部X光检查、住院)

构建分类器,解决有多个正确答案的问题时,用Sigmoid函数分别处理各个原始输出值。

Sigmoid函数如下所示(注意e):

在该公式中,σ表示Sigmoid函数,σ(zj)表示将Sigmoid函数应用于数字Zj。 “Zj”表示单个原始输出值,如-0.5。 j表示当前运算的输出值。如果有四个原始输出值,则j = 1,2,3或4。在前面的例子中,原始输出值为[-0.5,1.2,-0.1,2.4],则Z1 = -0.5,Z2 = 1.2,Z3 = -0.1,Z4 = 2.4。

所以,

Z2,Z3、Z4 的计算过程同上。

由于Sigmoid函数分别应用于每个原始输出值,因此可能出现的输出情况包括:所有类别概率都很低(如“此胸部X光检查没有异常”),一种类别的概率很高但是其他类别的概率很低(如“胸部X光检查仅发现肺炎”),多个或所有类别的概率都很高(如“胸部X光检查发现肺炎和脓肿”)。

下图为Sigmoid函数曲线:

5.2Softmax =多类别分类问题=只有一个正确答案=互斥输出(例如手写数字,鸢尾花)

构建分类器,解决只有唯一正确答案的问题时,用Softmax函数处理各个原始输出值。

Softmax函数的分母综合了原始输出值的所有因素,这意味着,Softmax函数得到的不同概率之间相互关联。

Softmax函数表述如下:

除分母外,为综合所有因素,将原始输出值中的e ^ thing相加,Softmax函数与Sigmoid函数差别不大。换言之,用Softmax函数计算单个原始输出值(例如Z1)时,不能只计算Z1,分母中的Z1,Z2,Z3和Z4也应加以计算,如下所示:

Softmax函数的优势在于所有输出概率的总和为1:

区分手写数字时,用Softmax函数处理原始输出值,如要增加某一示例被分为“8”的概率,就要降低该示例被分到其他数字(0,1,2,3,4,5,6,7和/或9)的概率。

5.3 Sigmoid和Softmax的其他示例

6、Softmax VS k个二元分类器

如果你在开发一个音乐分类的应用,需要对k种类型的音乐进行识别,那么是选择使用 softmax 分类器呢,还是使用 logistic 回归算法建立 k 个独立的二元分类器呢?

这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)

如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的 logistic 回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。

现在我们来看一个计算视觉领域的例子,你的任务是将图像分到三个不同类别中。(i) 假设这三个类别分别是:室内场景、户外城区场景、户外荒野场景。你会使用sofmax回归还是 3个logistic 回归分类器呢? (ii) 现在假设这三个类别分别是室内场景、黑白图片、包含人物的图片,你又会选择 softmax 回归还是多个 logistic 回归分类器呢?
在第一个例子中,三个类别是互斥的,因此更适于选择softmax回归分类器 。而在第二个例子中,建立三个独立的 logistic回归分类器更加合适。

7、ReLu函数和softplus函数

ReLu函数的全称为Rectified Linear Units,函数表达式为y=max(0,x),softplus函数的数学表达式为y=log(1+ex),它们的函数表达式如下: 

  这里写图片描述 
可以看到,softplus可以看作是ReLu的平滑。根据神经科学家的相关研究,softplus和ReLu与脑神经元激活频率函数有神似的地方。也就是说,相比于早期的激活函数,softplus和ReLu更加接近脑神经元的激活模型,而神经网络正是基于脑神经科学发展而来,这两个激活函数的应用促成了神经网络研究的新浪潮。

了解更多请参考:http://www.cnblogs.com/neopenx/p/4453161.html

8、总结

如果模型输出为非互斥类别,且可以同时选择多个类别,则采用Sigmoid函数计算该网络的原始输出值。

如果模型输出为互斥类别,且只能选择一个类别,则采用Softmax函数计算该网络的原始输出值

再学一招:对于那些有一大组标签的情况,要使用softmax激活函数的变体,它被称为分级softmax激活函数,该变体将标签分解为树型结构,并在树的每个节点训练softmax分类器来指导分支进行分类。

参考文献:Deep Learning:A Practitioner's Approach

                  https://blog.csdn.net/uncle_ll/article/details/82778750

                  https://blog.csdn.net/u014422406/article/details/52805924

                  https://blog.csdn.net/Suan2014/article/details/77162042

posted @ 2020-11-03 18:13  Chen洋  阅读(5465)  评论(0编辑  收藏  举报