mysql json效率测试
表结构
另个表都是ID作为主键,另外5个字段类型相等,create_date 数据类型略有不同
#普通表,索引是后面的测试过程中添加的
CREATE TABLE `goods` (
`id` bigint NOT NULL AUTO_INCREMENT,
`name` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci DEFAULT NULL,
`stock` int DEFAULT NULL,
`des` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci DEFAULT NULL,
`des2` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci DEFAULT NULL,
`data` text CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci,
`create_date` timestamp NULL DEFAULT NULL,
PRIMARY KEY (`id`) USING BTREE,
KEY `goods_des_IDX` (`des`) USING BTREE,
KEY `goods_name_IDX` (`name`) USING BTREE,
KEY `goods_stock_IDX` (`stock`,`name`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=1810224621868826706 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci ROW_FORMAT=DYNAMIC;
#按照json数据结构存储的表
CREATE TABLE `goods3` (
`id` bigint NOT NULL,
`json_data` json NOT NULL,
`name` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci GENERATED ALWAYS AS (json_unquote(json_extract(`json_data`,_utf8mb4'$.name'))) VIRTUAL,
`stock` int GENERATED ALWAYS AS (json_unquote(json_extract(`json_data`,_utf8mb4'$.stock'))) VIRTUAL,
`des` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci GENERATED ALWAYS AS (json_unquote(json_extract(`json_data`,_utf8mb4'$.des'))) VIRTUAL,
`des2` varchar(255) CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci GENERATED ALWAYS AS (json_unquote(json_extract(`json_data`,_utf8mb4'$.des2'))) VIRTUAL,
`data` text CHARACTER SET utf8mb4 COLLATE utf8mb4_0900_ai_ci GENERATED ALWAYS AS (json_unquote(json_extract(`json_data`,_utf8mb4'$.data'))) VIRTUAL,
`create_date` bigint GENERATED ALWAYS AS (json_unquote(json_extract(`json_data`,_utf8mb4'$.createDate'))) VIRTUAL,
PRIMARY KEY (`id`),
KEY `goods3_des_IDX` (`des`) USING BTREE,
KEY `goods3_name_IDX` (`name`) USING BTREE,
KEY `goods3_stock_IDX` (`stock`,`name`) USING BTREE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_0900_ai_ci;
硬件说明
虚拟机,分配4核1G内存,SSD
数据说明
都是2000W+数据,其中有2000W数据是两边一模一样的,另外少量对比插入时间操作,导致两边数据略微不相等。
数据例举
占用空间对比
普通表3.3G,json表6.1G
查询全量count 对比
#-----------------------查询count-------------------------------------------没啥区别
#23s
SELECT count(*) from goods;
#23S
SELECT count(*) from goods3;
#23s
SELECT count(id) from goods;
#23s
SELECT count(id) from goods3;
#---------------------------深分页查询对比---------------------------------------性能约差3倍
#1s
SELECT * from goods limit 1000000,10;
#3s
SELECT * from goods3 limit 1000000,10;
#5s
SELECT * from goods limit 5000000,10;
#15s
SELECT * from goods3 limit 5000000,10;
#10s
SELECT * from goods limit 10000000,10;
#31s
SELECT * from goods3 limit 10000000,10;
#16s
SELECT * from goods limit 15000000,10;
#47s
SELECT * from goods3 limit 15000000,10;
#22s
SELECT * from goods limit 20000000,10;
#64s
SELECT * from goods3 limit 20000000,10;
查询普通字段对比
#---------------------------无索引字段查询对比--------------------------------------性能约差3倍
#12s
SELECT count(*) from goods where name = "AA0";
#34s
SELECT count(*) from goods3 where name = "AA0";
#11s
SELECT count(*) from goods where name = "ZB3";
#33s
SELECT count(*) from goods3 where name = "ZB3";
#11s
SELECT count(*) from goods where name = "Gi6";
#34s
SELECT count(*) from goods3 where name = "Gi6";
#14s
SELECT count(*) from goods where name = "oO5";
#33s
SELECT count(*) from goods3 where name = "oO5";
#--查询stock,没有索引,普通数字字段-------------------- 差距依旧是约3倍
#11s
SELECT count(*) from goods where stock = 8888;
#33s
SELECT count(*) from goods3 where stock = 8888;
#11s
SELECT count(*) from goods where stock = 176;
#32s
SELECT count(*) from goods3 where stock = 176;
#11s
SELECT count(*) from goods where stock = 5580;
#32s
SELECT count(*) from goods3 where stock = 5580;
#11s
SELECT count(*) from goods where stock = 1212;
#33s
SELECT count(*) from goods3 where stock = 1212;
--------------下面的测试是添加索引以后---------------
有索引字段对比
#---------------------------添加索引后查询对比-------------------------------------- 索引以后差距不大,甚至json格式还快点
#0.016s
SELECT count(*) from goods where name = "QQ7";
#0.001s
SELECT count(*) from goods3 where name = "QQ7";
#0.016s
SELECT count(*) from goods where name = "zy0";
#0.001s
SELECT count(*) from goods3 where name = "zy0";
#0.016s
SELECT count(*) from goods where name = "tf4";
#0.002s
SELECT count(*) from goods3 where name = "tf4";
#0.049s
SELECT count(*) from goods where name = "hu8";
#0.017s
SELECT count(*) from goods3 where name = "hu8";
#------------------添加索引后查询对比(查全量数据)-------------------------------------- 结论差不多
#0.122s
SELECT * from goods where name = "QQ7";
#0.141s
SELECT * from goods3 where name = "QQ7";
#0.106s
SELECT * from goods where name = "zy0";
#0.097s
SELECT * from goods3 where name = "zy0";
#0.101s
SELECT * from goods where name = "tf4";
#0.091s
SELECT * from goods3 where name = "tf4";
#0.104s
SELECT * from goods where name = "hu8";
#0.099s
SELECT * from goods3 where name = "hu8";
#--查询另外一个索引,不是唯一索引,但是数据基本唯一---------------- 没区别,都很快
#0.019s
SELECT * from goods where des = "oqiVb3pUoEo4CgqV";
#0.050s
SELECT * from goods3 where des = "oqiVb3pUoEo4CgqV";
#0.049s
SELECT * from goods where des = "lHr9AQyItN57uVrJ";
#0.016s
SELECT * from goods3 where des = "lHr9AQyItN57uVrJ";
#0.015s
explain SELECT * from goods where des = "buWN4squ1YjZNqzJ";
#0.049s
explain SELECT * from goods3 where des = "buWN4squ1YjZNqzJ";
#0.022s
SELECT * from goods where des = "rGDCl3tr0uGOrcOd";
#0.017s
SELECT * from goods3 where des = "rGDCl3tr0uGOrcOd";
联合索引字段对比
#查询有一个索引字段一个不是索引字段,正常应该和使用索引效率接近------------------------
#0.337s
SELECT count(*) from goods where stock = 8888 and name = "WXR";
#0.369
SELECT count(*) from goods3 where stock = 8888 and name = "WXR";
#0.160s
SELECT count(*) from goods where stock = 8888 and name = "MT0" ;
#0.184s
SELECT count(*) from goods3 where stock = 8888 and name = "MT0";
结论
- json格式+虚拟列会占用更对的存储空间,json+虚拟列接近2倍的存储
据说json格式使用CPU占用和IO会远远大于普通字段,暂时没想好怎么验证,存储占用更多是铁定的 - 如果没有索引,json+虚拟列的查询耗时约是普通字段的3倍
- 有索引并且索引命中的情况下,几乎没有区别,都很快
能耍的时候就一定要耍,不能耍的时候一定要学。
--天道酬勤,贵在坚持posted on 2024-07-10 14:12 zhangyukun 阅读(53) 评论(0) 编辑 收藏 举报