flyod
最开始看错数据了没看到Q = 100 是50%的数据以为跑q遍floyd能过,结果只有30,其他全t
1、要注意题目中的条件,挖掘一些性质
var code = “92ce4972-7e0f-4a6f-9f3a-4efef328be45”
2、本题的另一个关键的是要对floyd的过程原理比较熟悉,floyd一共有三重循环,第一重循环相当于枚举的决策,也就是能从那个点转移过来,k就是这个中转站,另外两重循环是枚举的状态
3、我们观察到每个村庄的重建时间是递增的,并且询问的时间也是递增或保持不变,所以我们可以在读入每个询问的时间时,看一下是否存在中转站,在这个时间已经建好,并且可以去更新其他点,我们找到所以这样的点去更新,然后cur不用回去,因为询问的时间也是递增的,只需要在读入下一个询问后,查看是否有新的中转点可以去更新其他点即可。
4、经过上面的分析我们可以知道我们只需要跑一遍floyd即可,因为只有满足的中转点才会被用,时间复杂度为O(n^3)
附上floyd的板子
#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;
const int N = 210, INF = 1e9;
int n, m, Q;
int d[N][N];
void Floyd()
{
for(int k = 1; k <= n; k ++)
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= n; j ++)
//要取一下最小值这个写的时候老是忘记
d[i][j] = min(d[i][j], d[i][k] + d[k][j]);
}
int main()
{
cin >> n >> m >> Q;
for(int i = 1; i <= n; i ++)
for(int j = 1; j <= n; j ++)
if(i == j) d[i][j] = 0;
else d[i][j] = INF;
for(int i = 0; i < m; i ++)
{
int a, b, w; cin >> a >> b >> w;
d[a][b] = min(d[a][b], w);
}
Floyd();
while(Q --)
{
int a, b; cin >> a >> b;
if(d[a][b] > INF / 2) puts("impossible");
else cout << d[a][b]<<endl;;
}
return 0;
}
灾后重建
题目背景
B 地区在地震过后,所有村庄都造成了一定的损毁,而这场地震却没对公路造成什么影响。但是在村庄重建好之前,所有与未重建完成的村庄的公路均无法通车。换句话说,只有连接着两个重建完成的村庄的公路才能通车,只能到达重建完成的村庄。
题目描述
给出 B 地区的村庄数
N
N
N,村庄编号从
0
0
0 到
N
−
1
N-1
N−1,和所有
M
M
M 条公路的长度,公路是双向的。并给出第
i
i
i 个村庄重建完成的时间
t
i
t_i
ti,你可以认为是同时开始重建并在第
t
i
t_i
ti 天重建完成,并且在当天即可通车。若
t
i
t_i
ti 为
0
0
0 则说明地震未对此地区造成损坏,一开始就可以通车。之后有
Q
Q
Q 个询问
(
x
,
y
,
t
)
(x,y,t)
(x,y,t),对于每个询问你要回答在第
t
t
t 天,从村庄
x
x
x 到村庄
y
y
y 的最短路径长度为多少。如果无法找到从
x
x
x 村庄到
y
y
y 村庄的路径,经过若干个已重建完成的村庄,或者村庄
x
x
x 或村庄
y
y
y 在第
t
t
t 天仍未重建完成,则需要返回 -1
。
输入格式
第一行包含两个正整数 N , M N,M N,M,表示了村庄的数目与公路的数量。
第二行包含 N N N个非负整数 t 0 , t 1 , … , t N − 1 t_0, t_1,…, t_{N-1} t0,t1,…,tN−1,表示了每个村庄重建完成的时间,数据保证了 t 0 ≤ t 1 ≤ … ≤ t N − 1 t_0 ≤ t_1 ≤ … ≤ t_{N-1} t0≤t1≤…≤tN−1。
接下来 M M M行,每行 3 3 3个非负整数 i , j , w i, j, w i,j,w, w w w为不超过 10000 10000 10000的正整数,表示了有一条连接村庄 i i i与村庄 j j j的道路,长度为 w w w,保证 i ≠ j i≠j i=j,且对于任意一对村庄只会存在一条道路。
接下来一行也就是 M + 3 M+3 M+3行包含一个正整数 Q Q Q,表示 Q Q Q个询问。
接下来 Q Q Q行,每行 3 3 3个非负整数 x , y , t x, y, t x,y,t,询问在第 t t t天,从村庄 x x x到村庄 y y y的最短路径长度为多少,数据保证了 t t t是不下降的。
输出格式
共 Q Q Q行,对每一个询问 ( x , y , t ) (x, y, t) (x,y,t)输出对应的答案,即在第 t t t天,从村庄 x x x到村庄 y y y的最短路径长度为多少。如果在第t天无法找到从 x x x村庄到 y y y村庄的路径,经过若干个已重建完成的村庄,或者村庄x或村庄 y y y在第 t t t天仍未修复完成,则输出 − 1 -1 −1。
样例 #1
样例输入 #1
4 5
1 2 3 4
0 2 1
2 3 1
3 1 2
2 1 4
0 3 5
4
2 0 2
0 1 2
0 1 3
0 1 4
样例输出 #1
-1
-1
5
4
提示
对于 30 % 30\% 30%的数据,有 N ≤ 50 N≤50 N≤50;
对于 30 % 30\% 30%的数据,有 t i = 0 t_i= 0 ti=0,其中有 20 % 20\% 20%的数据有 t i = 0 t_i = 0 ti=0且 N > 50 N>50 N>50;
对于 50 % 50\% 50%的数据,有 Q ≤ 100 Q≤100 Q≤100;
对于 100 % 100\% 100%的数据,有 N ≤ 200 N≤200 N≤200, M ≤ N × ( N − 1 ) / 2 M≤N \times (N-1)/2 M≤N×(N−1)/2, Q ≤ 50000 Q≤50000 Q≤50000,所有输入数据涉及整数均不超过 100000 100000 100000。
#include <iostream>
#include <cstring>
using namespace std;
const int N = 210, INF = 2e9;
long long d[N][N], a[N];
bool st[N];
int n, m;
inline void floyd(int k)
{
for(int i = 0; i < n; ++ i)
for(int j = 0; j < n; ++ j)
if(d[i][j] > d[i][k] + d[k][j])
d[i][j] = d[i][k] + d[k][j];
}
int main()
{
// freopen("1.in.txt", "r", stdin);
cin >> n >> m;
for(int i = 0; i < n; ++ i) cin >> a[i];
for(int i = 0; i < n; ++ i)
for(int j = 0; j < n; ++ j)
{
if(i == j) d[i][i] = 0;
d[i][j] = INF;
}
for(int k = 0; k < m; ++ k)
{
int a, b ,c; cin >> a >> b >> c;
d[a][b] = d[b][a] = c;
}
int q, cur = 0;cin >> q;
while(q --)
{
int x, y, t; cin >> x >> y >> t;
while(a[cur] <= t && cur < n)
{
floyd(cur);
cur ++;
}
if(a[x] > t || a[y] > t || d[x][y] == INF) cout << -1 << endl;
else cout << d[x][y] << endl;
}
return 0;
}