洛谷P1144
最短路计数
题目描述
给出一个 \(N\) 个顶点 \(M\) 条边的无向无权图,顶点编号为 \(1\sim N\)。问从顶点 \(1\) 开始,到其他每个点的最短路有几条。
输入格式
第一行包含 \(2\) 个正整数 \(N,M\),为图的顶点数与边数。
接下来 \(M\) 行,每行 \(2\) 个正整数 \(x,y\),表示有一条由顶点 \(x\) 连向顶点 \(y\) 的边,请注意可能有自环与重边。
输出格式
共 \(N\) 行,每行一个非负整数,第 \(i\) 行输出从顶点 \(1\) 到顶点 \(i\) 有多少条不同的最短路,由于答案有可能会很大,你只需要输出 $ ans \bmod 100003$ 后的结果即可。如果无法到达顶点 \(i\) 则输出 \(0\)。
样例 #1
样例输入 #1
5 7
1 2
1 3
2 4
3 4
2 3
4 5
4 5
样例输出 #1
1
1
1
2
4
提示
\(1\) 到 \(5\) 的最短路有 \(4\) 条,分别为 \(2\) 条 \(1\to 2\to 4\to 5\) 和 \(2\) 条 \(1\to 3\to 4\to 5\)(由于 \(4\to 5\) 的边有 \(2\) 条)。
对于 \(20\%\) 的数据,\(1\le N \le 100\);
对于 \(60\%\) 的数据,\(1\le N \le 10^3\);
对于 \(100\%\) 的数据,\(1\le N\le10^6\),\(1\le M\le 2\times 10^6\)。
1、因为边权是1所以bfs,spfa,dijkstra都可以因为spfa最近在学习所以而且spfa打起来挺顺手的,就用spfa打的
2、我们用一个数组记录每个点最短路的答案
3、这里自环和重边不要用考虑,因为前向星中存的边会跑完,重边会跑两遍,这样的话不会影响计数的,举个例子就是
1 2
1 2
1 2
这里答案会输出1 2,因为1到2有两条边会都会跑所以最短路有两条
4、我们考虑ans的更新。采用分类讨论。
if(d[j] > d[t] + 1)
{
d[j] = d[t] + 1;
ans[j] = ans[t] % mod;
if(!inq[j])
{
inq[j] = 1;
q.push(j);
}
}
else if(d[j] == d[t] + 1)
ans[j] =(ans[j] + ans[t]) % mod;
5、注意答案要边计算边取模
6、注意要初始化链表啊,表头最开始全部初始化为 -1
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
const int N = 1e6 + 10, M = 2e6 + 10, mod = 100003;
int n, m, ans[N];
int h[N], e[M], ne[M], idx;
void add(int a, int b)
{
e[idx] = b; ne[idx] = h[a]; h[a] = idx ++;
}
int d[N];
bool inq[N];
void spfa()
{
queue<int> q;
for(int i = 1; i <= n; ++ i) d[i] = 0x7fffffff;
memset(inq, 0, sizeof inq);
d[1] = 0; q.push(1); inq[1] = 1; ans[1] = 1;
while(q.size())
{
auto t = q.front(); q.pop(); inq[t] = 0;
for(int i = h[t]; i != -1; i = ne[i])
{
int j = e[i];
if(d[j] > d[t] + 1)
{
d[j] = d[t] + 1;
ans[j] = ans[t] % mod;
if(!inq[j])
{
inq[j] = 1;
q.push(j);
}
}
else if(d[j] == d[t] + 1)
ans[j] =(ans[j] + ans[t]) % mod;
}
}
}
int main()
{
freopen("1.txt","r",stdin);
memset(h, -1, sizeof h);
cin >> n >> m;
for(int i = 1; i <= m; ++ i)
{
int a, b; cin >> a >> b;
add(a, b);add(b, a);
}
spfa();
for(int i = 1; i <= n; ++ i) cout << ans[i] << endl;
return 0;
}