java高级精讲之高并发抢红包~揭开Redis分布式集群与Lua神秘面纱
java高级精讲之高并发抢红包~揭开Redis分布式集群与Lua神秘面纱
Redis企业集群高级应用精品教程【图灵学院】
利用redis + lua解决抢红包高并发的问题
抢红包的需求分析
抢红包的场景有点像秒杀,但是要比秒杀简单点。
因为秒杀通常要和库存相关。而抢红包则可以允许有些红包没有被抢到,因为发红包的人不会有损失,没抢完的钱再退回给发红包的人即可。
另外像小米这样的抢购也要比淘宝的要简单,也是因为像小米这样是一个公司的,如果有少量没有抢到,则下次再抢,人工修复下数据是很简单的事。而像淘宝这么多商品,要是每一个都存在着修复数据的风险,那如果出故障了则很麻烦。
淘宝的专家丁奇有个文章有写到淘宝是如何应对秒杀的:《秒杀场景下MySQL的低效–原因和改进》
http://blog.nosqlfan.com/html/4209.html
基于redis的抢红包方案
下面介绍一种基于redis的抢红包方案。
把原始的红包称为大红包,拆分后的红包称为小红包。
1.小红包预先生成,插到数据库里,红包对应的用户ID是null。生成算法见另一篇blog:http://blog.csdn.net/hengyunabc/article/details/19177877
2.每个大红包对应两个redis队列,一个是未消费红包队列,另一个是已消费红包队列。开始时,把未抢的小红包全放到未消费红包队列里。
未消费红包队列里是json字符串,如{userId:'789', money:'300'}。
3.在redis中用一个map来过滤已抢到红包的用户。
4.抢红包时,先判断用户是否抢过红包,如果没有,则从未消费红包队列中取出一个小红包,再push到另一个已消费队列中,最后把用户ID放入去重的map中。
5.用一个单线程批量把已消费队列里的红包取出来,再批量update红包的用户ID到数据库里。
上面的流程是很清楚的,但是在第4步时,如果是用户快速点了两次,或者开了两个浏览器来抢红包,会不会有可能用户抢到了两个红包?
为了解决这个问题,采用了lua脚本方式,让第4步整个过程是原子性地执行。
下面是在redis上执行的Lua脚本:
- -- 函数:尝试获得红包,如果成功,则返回json字符串,如果不成功,则返回空
- -- 参数:红包队列名, 已消费的队列名,去重的Map名,用户ID
- -- 返回值:nil 或者 json字符串,包含用户ID:userId,红包ID:id,红包金额:money
- -- 如果用户已抢过红包,则返回nil
- if redis.call('hexists', KEYS[3], KEYS[4]) ~= 0 then
- return nil
- else
- -- 先取出一个小红包
- local hongBao = redis.call('rpop', KEYS[1]);
- if hongBao then
- local x = cjson.decode(hongBao);
- -- 加入用户ID信息
- x['userId'] = KEYS[4];
- local re = cjson.encode(x);
- -- 把用户ID放到去重的set里
- redis.call('hset', KEYS[3], KEYS[4], KEYS[4]);
- -- 把红包放到已消费队列里
- redis.call('lpush', KEYS[2], re);
- return re;
- end
- end
- return nil
下面是测试代码:
- public class TestEval {
- static String host = "localhost";
- static int honBaoCount = 1_0_0000;
- static int threadCount = 20;
- static String hongBaoList = "hongBaoList";
- static String hongBaoConsumedList = "hongBaoConsumedList";
- static String hongBaoConsumedMap = "hongBaoConsumedMap";
- static Random random = new Random();
- // -- 函数:尝试获得红包,如果成功,则返回json字符串,如果不成功,则返回空
- // -- 参数:红包队列名, 已消费的队列名,去重的Map名,用户ID
- // -- 返回值:nil 或者 json字符串,包含用户ID:userId,红包ID:id,红包金额:money
- static String tryGetHongBaoScript =
- // "local bConsumed = redis.call('hexists', KEYS[3], KEYS[4]);\n"
- // + "print('bConsumed:' ,bConsumed);\n"
- "if redis.call('hexists', KEYS[3], KEYS[4]) ~= 0 then\n"
- + "return nil\n"
- + "else\n"
- + "local hongBao = redis.call('rpop', KEYS[1]);\n"
- // + "print('hongBao:', hongBao);\n"
- + "if hongBao then\n"
- + "local x = cjson.decode(hongBao);\n"
- + "x['userId'] = KEYS[4];\n"
- + "local re = cjson.encode(x);\n"
- + "redis.call('hset', KEYS[3], KEYS[4], KEYS[4]);\n"
- + "redis.call('lpush', KEYS[2], re);\n"
- + "return re;\n"
- + "end\n"
- + "end\n"
- + "return nil";
- static StopWatch watch = new StopWatch();
- public static void main(String[] args) throws InterruptedException {
- // testEval();
- generateTestData();
- testTryGetHongBao();
- }
- static public void generateTestData() throws InterruptedException {
- Jedis jedis = new Jedis(host);
- jedis.flushAll();
- final CountDownLatch latch = new CountDownLatch(threadCount);
- for(int i = 0; i < threadCount; ++i) {
- final int temp = i;
- Thread thread = new Thread() {
- public void run() {
- Jedis jedis = new Jedis(host);
- int per = honBaoCount/threadCount;
- JSONObject object = new JSONObject();
- for(int j = temp * per; j < (temp+1) * per; j++) {
- object.put("id", j);
- object.put("money", j);
- jedis.lpush(hongBaoList, object.toJSONString());
- }
- latch.countDown();
- }
- };
- thread.start();
- }
- latch.await();
- }
- static public void testTryGetHongBao() throws InterruptedException {
- final CountDownLatch latch = new CountDownLatch(threadCount);
- System.err.println("start:" + System.currentTimeMillis()/1000);
- watch.start();
- for(int i = 0; i < threadCount; ++i) {
- final int temp = i;
- Thread thread = new Thread() {
- public void run() {
- Jedis jedis = new Jedis(host);
- String sha = jedis.scriptLoad(tryGetHongBaoScript);
- int j = honBaoCount/threadCount * temp;
- while(true) {
- Object object = jedis.eval(tryGetHongBaoScript, 4, hongBaoList, hongBaoConsumedList, hongBaoConsumedMap, "" + j);
- j++;
- if (object != null) {
- // System.out.println("get hongBao:" + object);
- }else {
- //已经取完了
- if(jedis.llen(hongBaoList) == 0)
- break;
- }
- }
- latch.countDown();
- }
- };
- thread.start();
- }
- latch.await();
- watch.stop();
- System.err.println("time:" + watch.getTotalTimeSeconds());
- System.err.println("speed:" + honBaoCount/watch.getTotalTimeSeconds());
- System.err.println("end:" + System.currentTimeMillis()/1000);
- }
- }
测试结果20个线程,每秒可以抢2.5万个,足以应付绝大部分的抢红包场景。
如果是真的应付不了,拆分到几个redis集群里,或者改为批量抢红包,也足够应付。
总结:
redis的抢红包方案,虽然在极端情况下(即redis挂掉)会丢失一秒的数据,但是却是一个扩展性很强,足以应付高并发的抢红包方案。