8.18 动态规划——背包问题之01背包

  今天为大家讲解一道动态规划的经典问题——背包问题之01背包,稍有难度的优化多重背包留到下一篇为大家讲解。

 

 

 

//为大家放一道模板题

题目描述

       一个旅行者有一个最多能用m公斤的背包,现在有n件物品,它们的重量分别是W1,W2,...,Wn,它们的价值分别为C1,C2,...,Cn.若每种物品只有一件求旅行者能获得最大总价值。

 

输入

w第一行:两个整数,M(背包容量,M<=200)和N(物品数量,N<=30);
w   第2..N+1行:每行二个整数Wi,Ci,表示每个物品的重量和价值。

 

输出

仅一行,一个数,表示最大总价值。

 

样例输入

10 4
2 1
3 3
4 5
7 9

 

样例输出

12

 

 题解代码:

#include<iostream>
#include<string>
using namespace std;
int m,n,w[32],c[32],dp[32][305];
//int dp[305];
int main(){
 //01背包
 scanf("%d%d",&m,&n);
 for(int i=1;i<=n;i++){
  scanf("%d%d",&w[i],&c[i]);
 }
 //普通二维数组做法
 for(int i=1;i<=n;i++){
  for(int j=1;j<=m;j++){
   if(j>=w[i]){
    dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+c[i]);
   }
   else{
    dp[i][j]=dp[i-1][j];
   }
  }
 }
 printf("%d",dp[n][m]);
 //一维数组节省空间复杂度
 /*
 for(int i=1;i<=n;i++){
  for(int j=m;j>=w[i];j--){
   dp[j]=max(dp[j],dp[j-w[i]]+c[i]);
  }
 }
 printf("%d\n",dp[m]);
 */
 /*
 return 0;
}

 

posted @ 2019-08-18 00:11  陈晓淞cxs  阅读(196)  评论(0编辑  收藏  举报