LOJ6119 「2017 山东二轮集训 Day7」国王

题意

给定一颗树,每个点有权值 \(1\)\(-1\),称一条路径是好的当且仅当路径上所有点的权值和为 \(0\)

求连续编号区间 \([l, r]\) 使得两个点都在 \([l, r]\) 的好路径比两个点都不在 \([l, r]\) 的好路径数严格多的方案数。

\(n \le 10 ^ 5\)

Sol

两个端点都在区间内不好做,设一个区间的权值为 \(f_{[l, r]}\)

因此答案为 \(\sum [f_{[l, r]} > f_{[1, l - 1] \cup [r + 1, n]}]\)

集中注意力,考虑至少一个端点在区间内的情况,发现好像两边可以约掉!

具体地,至少一个端点在 \([l, r]\) 的方案数 等于 \(f_{[l, r]}\) 加上 有一个端点在 \([l, r]\) 一个端点在 \([1, l- 1] \cup [r + 1, n]\) 的方案数,于是直接约掉了。

考虑我们现在可以求出什么,设 \(g_i\) 表示一个端点为 \(i\) 的合法路径数,这个东西可以简单使用点分治求得。

最后因为合法区间具有单调性,直接双指针计算最小的合法区间即可。

复杂度 \(O(n \log n)\)

Code

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <array>
#include <bitset>
#define ll long long
#define pii pair <int, int>
using namespace std;
#ifdef ONLINE_JUDGE

#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
char buf[1 << 23], *p1 = buf, *p2 = buf, ubuf[1 << 23], *u = ubuf;

#endif
int read() {
    int p = 0, flg = 1;
    char c = getchar();
    while (c < '0' || c > '9') {
        if (c == '-') flg = -1;
        c = getchar();
    }
    while (c >= '0' && c <= '9') {
        p = p * 10 + c - '0';
        c = getchar();
    }
    return p * flg;
}
void write(ll x) {
    if (x < 0) {
        x = -x;
        putchar('-');
    }
    if (x > 9) {
        write(x / 10);
    }
    putchar(x % 10 + '0');
}
bool _stmer;

#define fi first
#define se second

const int N = 1e5 + 5, M = 2e5 + 5;

namespace G {

array <int, N> fir;
array <int, M> nex, to;

int cnt = 1;
void add(int x, int y) {
    cnt++;
    nex[cnt] = fir[x];
    to[cnt] = y;
    fir[x] = cnt;
}

} //namespace G

array <int, N> len, siz;
bitset <N> vis;

void dfs1(int x, int fa) {
    siz[x] = 1;
    for (int i = G::fir[x]; i; i = G::nex[i]) {
        if (vis[G::to[i]] || G::to[i] == fa) continue;
        dfs1(G::to[i], x), siz[x] += siz[G::to[i]];
    }
}

pii rt;

void dfs2(int x, int fa, int Rt) {
    int tp = 0;
    for (int i = G::fir[x]; i; i = G::nex[i]) {
        if (vis[G::to[i]] || G::to[i] == fa) continue;
        dfs2(G::to[i], x, Rt), tp = max(tp, siz[G::to[i]]);
    }
    tp = max(tp, siz[Rt] - siz[x]);
    if (tp < rt.fi) rt = make_pair(tp, x);
}

array <int, M> isl;
array <int, N> dis;

void dfs3(int x, int pl, int fa) {
    isl[dis[x]] += pl;
    for (int i = G::fir[x]; i; i = G::nex[i]) {
        if (vis[G::to[i]] || G::to[i] == fa) continue;
        dis[G::to[i]] = dis[x] + len[G::to[i]];
        dfs3(G::to[i], pl, x);
    }
}

array <int, N> f;

void dfs4(int x, int fa, int sum) {
    f[x] += isl[1e5 - sum];
    for (int i = G::fir[x]; i; i = G::nex[i]) {
        if (vis[G::to[i]] || G::to[i] == fa) continue;
        dfs4(G::to[i], x, sum + len[G::to[i]]);
    }
}


void solve(int x) {
    dis[x] = 1e5 + len[x];
    dfs3(x, 1, 0);
    f[x] += isl[1e5];
    for (int i = G::fir[x]; i; i = G::nex[i])
        if (!vis[G::to[i]])
            dfs3(G::to[i], -1, x), dfs4(G::to[i], x, len[G::to[i]]), dfs3(G::to[i], 1, x);
    dfs3(x, -1, 0);
}

void divide(int x) {
    rt = make_pair(2e9, 0);
    dfs1(x, 0), dfs2(x, 0, x);
    x = rt.se, vis[x] = 1, solve(x);
    for (int i = G::fir[x]; i; i = G::nex[i])
        if (!vis[G::to[i]]) divide(G::to[i]);
}

bool _edmer;
int main() {
    cerr << (&_stmer - &_edmer) / 1024.0 / 1024.0 << "MB\n";
    int n = read();
    for (int i = 1, x; i <= n; i++)
        x = read(), len[i] = x ? 1 : -1;
    for (int i = 2, x, y; i <= n; i++)
        x = read(), y = read(), G::add(x, y), G::add(y, x);
    divide(1);
    ll res = 0, sum = 0, ans = 0;
    for (int i = 1; i <= n; i++) res += f[i];
    for (int i = 1, lst = 1; i <= n; i++) {
        sum += f[i];
        while (lst < i && sum > res - sum) sum -= f[lst++];
        ans += lst - 1;
    }
    write(ans), puts("");
    return 0;
}
posted @ 2024-11-06 22:14  cxqghzj  阅读(2)  评论(0编辑  收藏  举报