[AGC002D] Stamp Rally

题意

给定一张无向图,\(q\) 次询问从 \(x, y\) 出发,经过 \(z\) 个点,可以重复经过每个点只算一次,求经过的边最大编号最小是多少。

\(n, q \le 10 ^ 5\)

Sol

先建出瓶颈生成树,问题变成树上瓶颈连通块?

似乎除了可持久化并查集没有其他做法。

首先根号做法显然,维护 \(\sqrt n\) 个并查集,暴力枚举在哪个块,哪个位置。

考虑 \(\texttt{Kruskal}\) 重构树。

首先最小生成树就是最小瓶颈生成树的充分条件。

其次在连接 \((x, y, z)\) 时,考虑新建一个节点将 \(x\) 挂在左儿子,\(y\) 挂在右儿子。

这样瓶颈连通块就变为子树叶节点数,求个 \(\texttt{LCA}\),套一个二分答案就做完了。

注意事实上这样建出来的并不是完全二叉树,树高并不是 \(log\),并不像点分树这样优美。

赛场上实际可以手搓构造方式满足上述限制。

Code

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <array>
#include <assert.h>
using namespace std;
#ifdef ONLINE_JUDGE

#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
char buf[1 << 23], *p1 = buf, *p2 = buf, ubuf[1 << 23], *u = ubuf;

#endif
int read() {
    int p = 0, flg = 1;
    char c = getchar();
    while (c < '0' || c > '9') {
        if (c == '-') flg = -1;
        c = getchar();
    }
    while (c >= '0' && c <= '9') {
        p = p * 10 + c - '0';
        c = getchar();
    }
    return p * flg;
}
void write(int x) {
    if (x < 0) {
        x = -x;
        putchar('-');
    }
    if (x > 9) {
        write(x / 10);
    }
    putchar(x % 10 + '0');
}
bool _stmer;

const int N = 1e5 + 5, M = 2e5 + 5;

namespace Uni {

array <int, M> fa, siz;

int find(int x) {
    if (x == fa[x]) return x;
    return fa[x] = find(fa[x]);
}

void merge(int x, int y) {
    int fx = find(x),
        fy = find(y);
    if (fx == fy) return;
    siz[fy] += siz[fx], fa[fx] = fy;
}

void init(int n) {
    for (int i = 1; i <= n; i++)
        siz[fa[i] = i] = 1;
}

} //namespace Uni

namespace Kst {

array <array <int, 2>, M> ch;
array <int, M> len, siz;

int cnt;

array <array <int, 21>, M> fa;

void add(int x, int y, int z) {
    if (Uni::find(x) == Uni::find(y)) return;
    int fx = Uni::find(x), fy = Uni::find(y);
    cnt++, Uni::fa[cnt] = cnt;
    ch[cnt][0] = fx, ch[cnt][1] = fy;
    fa[fx][0] = fa[fy][0] = cnt;
    Uni::merge(x, y), Uni::merge(y, cnt);
    len[cnt] = z, siz[cnt] = Uni::siz[cnt];
}

void init() {
    for (int j = 1; j <= 20; j++)
        for (int i = 1; i <= cnt; i++)
            fa[i][j] = fa[fa[i][j - 1]][j - 1];
    len[0] = 1e9;
}

int check(int x, int y, int k) {
    for (int i = 20; ~i; i--) {
        if (len[fa[x][i]] <= k) x = fa[x][i];
        if (len[fa[y][i]] <= k) y = fa[y][i];
    }
    return (siz[x] + siz[y]) / (1 + (x == y));
}

} //namespace Kst

bool _edmer;
int main() {
    cerr << (&_stmer - &_edmer) / 1024.0 / 1024.0 << "MB\n";
    int n = read(), m = read();
    Uni::init(n), Kst::cnt = n;
    for (int i = 1; i <= n; i++) Kst::siz[i] = 1;
    for (int i = 1; i <= m; i++) {
        int x = read(), y = read();
        Kst::add(x, y, i);
    }
    Kst::init();
    /* cerr << Kst::check(2, 4, 2) << endl; */
    int q = read();
    while (q--) {
        int x = read(), y = read(), k = read();
        int l = 1, r = m, ans = -1;
        while (l <= r) {
            int mid = (l + r) >> 1;
            if (Kst::check(x, y, mid) >= k)
                r = mid - 1, ans = mid;
            else l = mid + 1;
        }
        assert(~ans);
        write(ans), puts("");
    }
    return 0;
}
posted @ 2024-09-09 21:32  cxqghzj  阅读(5)  评论(0编辑  收藏  举报