P2257 YY的GCD
题意
求:
\[\sum_{i = 1} ^ n \sum_{j = 1} ^ m [\gcd(i, j) \in prime]
\]
Sol
考虑先枚举 \(gcd\)
\[\sum_{k = 1} ^ {\min(n, m)} \sum_{i = 1} ^ n \sum_{j = 1} ^ m [\gcd(i, j) = k] (k \in prime)
\]
整个式子同时除以 \(k\)
\[\sum_{k = 1} ^ {\min(n, m)} \sum_{i = 1} ^ {\lfloor \frac{n}{k} \rfloor} \sum_{j = 1} ^ {\lfloor \frac{m}{k} \rfloor} [\gcd(i, j) = 1] (k \in prime)
\]
反演一下
\[\sum_{k = 1} ^ {\min(n, m)} \sum_{i = 1} ^ {\lfloor \frac{n}{k} \rfloor} \sum_{j = 1} ^ {\lfloor \frac{m}{k} \rfloor} \sum_{d | \gcd(i, j)} \mu(d) (k \in prime)
\]
去掉 \(\sum\)
\[\sum_{k = 1} ^ {\min(n, m)} \sum_{d = 1} ^ {\min(n, m)} \mu(d) \lfloor \frac{n}{dk} \rfloor \lfloor \frac{m}{dk} \rfloor (k \in prime)
\]
令 \(g = d \times k\),考虑枚举 \(g\)。
\[\sum_{g = 1} ^ {min(n, m)} \lfloor \frac{n}{g} \rfloor \lfloor \frac{m}{g} \rfloor \sum_{k = 1} ^ {\min(n, m)} \mu(\frac{g}{k}) (k \in prime)
\]
前面整除分块,后面预处理前缀和,做完了。
复杂度 \(O(n + T \times \sqrt n)\)