LY1464 [ 20231112 NOIP 模拟赛 T4 ] 序列计数

题意

给定 \(n, m\)

求:

  • \(a_1 + a_2 + ... + a_m = n\)
  • \(1 ^ {a_1} \times 2 ^ {a_2} \times ... \times m ^ {a_m} \equiv x (\bmod m)\)

对于 \(x \in [1, m)\) 满足上述条件的方案数。

Sol

注意到下面的式子等价于:

\(1 \times 1 \times 1 ... \times 2 \times 2 ... \times... \times m\)

那么问题就变成,在 \(n\) 个格子中,插入 \([1, m]\),使得序列单调不降,乘积与 \(x\) 在膜 \(m\) 意义下,同余的方案数。

注意到我们并不关心 \(n\),考虑使用类似倍增的方法优化。

\(f_{i, l, r, k}\) 表示第 \(2 ^ i\) 个位置,值域的上下界为 \([l, r]\),乘积膜 \(m\) 等于 \(k\)

转移是 \(trivial\) 的。

\(f_{i, l, r, k} = \sum_{m1 = 1} ^ r \sum_{m2 = m1} ^ r\sum_{l = 0} ^ x f_{i - 1, l, m1} \times f_{i - 1, m2, r}\)

然后我们发现这个玩意可以前缀和优化。

\(g_{i, l, r, k} = \sum_{m1 = 1} ^ {r} g_{i, m1, r, k}\)

复杂度为 \(O(m ^ 5 \times log(n))\),可以通过。

Code

#include <iostream>
#include <algorithm>
#include <cstdio>
#include <array>
#include <ctime>
#include <cstring>
/* #define int long long */
using namespace std;
#ifdef ONLINE_JUDGE

#define getchar() (p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, 1 << 21, stdin), p1 == p2) ? EOF : *p1++)
char buf[1 << 23], *p1 = buf, *p2 = buf, ubuf[1 << 23], *u = ubuf;

#endif
int read() {
	int p = 0, flg = 1;
	char c = getchar();
	while (c < '0' || c > '9') {
		if (c == '-') flg = -1;
		c = getchar();
	}
	while (c >= '0' && c <= '9') {
		p = p * 10 + c - '0';
		c = getchar();
	}
	return p * flg;
}
void write(int x) {
	if (x < 0) {
		x = -x;
		putchar('-');
	}
	if (x > 9) {
		write(x / 10);
	}
	putchar(x % 10 + '0');
}
const int M = 41, mod = 1e9 + 7;
int _m;
void Mod(int &x) {
	if (x >= mod) x -= mod;
	if (x < 0) x += mod;
}
struct Matrix {
	int f[M][M][M];
	Matrix(int flg) {
		memset(f, 0, sizeof(f));
	}
	friend Matrix operator *(Matrix x, Matrix y) {
		for (int r = 0; r < _m; r++)
			for (int k = 0; k < _m; k++)
				for (int l = r - 1; ~l; l--)
					y.f[l][r][k] += y.f[l + 1][r][k], Mod(y.f[l][r][k]);
		Matrix ans(0);
		for (int l = 0; l < _m; l++)
		for (int mid = l; mid < _m; mid++)
		for (int k1 = 0; k1 < _m; k1++) {
			if (!x.f[l][mid][k1]) continue;
			for (int r = mid; r < _m; r++)
				for (int k2 = 0; k2 < _m; k2++) {
					if (!y.f[mid][r][k2]) continue;
					int k = k1 * k2 % _m;
					ans.f[l][r][k] += 1ll * x.f[l][mid][k1] * y.f[mid][r][k2] % mod;
					Mod(ans.f[l][r][k]);
				}
		}
		return ans;
	}
	friend Matrix operator ^(Matrix x, int k) {
		Matrix ans(0);
		ans.f[0][0][1] = 1;
		while (k) {
			if (k & 1) ans = ans * x;
			x = x * x;
			k >>= 1;
		}
		return ans;
	}
};

array <int, M> ans;

int main() {
#ifdef ONLINE_JUDGE
	freopen("seq.in", "r", stdin);
	freopen("seq.out", "w", stdout);
#endif
	int n = read(), m = read();
	_m = m;
	Matrix T(0);
	for (int i = 0; i < m; i++)
		T.f[i][i][i] = 1;
	T = T ^ n;
	for (int i = 0; i < m; i++)
		for (int j = i; j < m; j++)
			for (int k = 0; k < m; k++)
				ans[k] += T.f[i][j][k], Mod(ans[k]);
	for (int i = 0; i < m; i++)
		write(ans[i]), puts("");
	cerr << clock() << endl;
	return 0;
}
posted @ 2023-11-21 08:32  cxqghzj  阅读(3)  评论(0编辑  收藏  举报