Pytorch-分类器

1.分类问题

二分类

  • $f:x\rightarrow p(y=1|x)$  
    • $p(y=1|x)$  解释成给定x,求y=1的概率,如果概率>0.5,预测为1,否则预测为0
  • minimize MSE

多分类

  • $f:x\rightarrow p(y|x)$
    • $[p(y=0|x),p(y=1|x),...,p(y=9|x)]$
  • $p(y|x)\epsilon [0,1]$
  • $\sum_{i=0}^{9}p(y=i|x)=1$

2.交叉熵

信息熵:描述信息的不确定性。$H(U)=E(-logp_i)=-\sum _{i=1}^{n}p_{i}logp_{i}$

描述一个分布,不确定性越高,熵越低。

1 a=torch.full([4],1/4.)
2 print(-(a*torch.log2(a)).sum())               #tensor(2.)
3 
4 b=torch.tensor([0.1,0.1,0.1,0.7])
5 print(-(b*torch.log2(b)).sum())               #tensor(1.3568)
6 
7 c=b=torch.tensor([0.001,0.001,0.001,0.999])
8 print(-(c*torch.log2(c)).sum())               #tensor(0.0313)

2.1交叉熵

$H(p,q)=-\sum _{x\epsilon X}p(x)logq(x)$

$H(p,q)=H(p)+D_{KL}(p|q)$  (KL散度=交叉熵-信息熵,衡量p,q分布的重叠情况)

  • p=q,H(p,q)=H(p)
  • 对独热编码来说,H(p)=0

2.2二分类问题的交叉熵

$H(p,q)=-\sum _{i\epsilon cat,dog}P(i)logQ(i)$  P(i)指i的真实值,Q(i)指i的预测值。

           $=-P(cat)logQ(cat)-P(dog)logQ(dog)$    $P(dog)=(1-P(cat))$

           $=-\sum _{i=1}^{n}y_ilog(p_i)+(1-y_i)log(1-p_i)$    $y_i$指i的真实值,$p_i$指i的预测值。

 

 1 import torch
 2 from torch.nn import functional as F
 3 
 4 x=torch.randn(1,784)
 5 w=torch.randn(10,784)
 6 logits=x@w.t()                                            #shape=torch.Size([1,10])
 7 
 8 print(F.cross_entropy(logits, torch.tensor([3])))         #tensor(77.1405)
 9 
10 pred=F.softmax(logits,dim=1)                              #shape=torch.Size([1,10])
11 pred_log=torch.log(pred)
12 print(F.nll_loss(pred_log, torch.tensor([3])))            #tensor(77.1405)

cross_entropy函数=>softmax->log->nll_loss

3.多分类实战

识别手写数据集

 1 import  torch
 2 import  torch.nn as nn
 3 import  torch.nn.functional as F
 4 import  torch.optim as optim
 5 from    torchvision import datasets, transforms
 6 
 7 #超参数
 8 batch_size=200
 9 learning_rate=0.01
10 epochs=10
11 
12 #获取训练集
13 train_loader = torch.utils.data.DataLoader(
14     datasets.MNIST('../data', train=True, download=True,          #train=True则得到的是训练集
15                    transform=transforms.Compose([                 #transform进行数据预处理
16                        transforms.ToTensor(),                     #转成Tensor类型的数据
17                        transforms.Normalize((0.1307,), (0.3081,)) #进行数据标准化(减去均值除以方差)
18                    ])),
19     batch_size=batch_size, shuffle=True)                          #按batch_size分出一个batch维度在最前面,shuffle=True打乱顺序
20 
21 
22 
23 #获取测试集
24 test_loader = torch.utils.data.DataLoader(
25     datasets.MNIST('../data', train=False, transform=transforms.Compose([
26         transforms.ToTensor(),
27         transforms.Normalize((0.1307,), (0.3081,))
28     ])),
29     batch_size=batch_size, shuffle=True)
30 
31 #设定参数w和b
32 w1, b1 = torch.randn(200, 784, requires_grad=True),\
33          torch.zeros(200, requires_grad=True)             #w1(out,in)
34 w2, b2 = torch.randn(200, 200, requires_grad=True),\
35          torch.zeros(200, requires_grad=True)
36 w3, b3 = torch.randn(10, 200, requires_grad=True),\
37          torch.zeros(10, requires_grad=True)
38 
39 torch.nn.init.kaiming_normal_(w1)
40 torch.nn.init.kaiming_normal_(w2)
41 torch.nn.init.kaiming_normal_(w3)
42 
43 
44 def forward(x):
45     x = x@w1.t() + b1
46     x = F.relu(x)
47     x = x@w2.t() + b2
48     x = F.relu(x)
49     x = x@w3.t() + b3
50     x = F.relu(x)
51     return x
52 
53 
54 #定义sgd优化器,指明优化参数、学习率
55 optimizer = optim.SGD([w1, b1, w2, b2, w3, b3], lr=learning_rate)
56 criteon = nn.CrossEntropyLoss()
57 
58 for epoch in range(epochs):
59 
60     for batch_idx, (data, target) in enumerate(train_loader):
61         data = data.view(-1, 28*28)          #将二维的图片数据摊平[样本数,784]
62 
63         logits = forward(data)               #前向传播
64         loss = criteon(logits, target)       #nn.CrossEntropyLoss()自带Softmax
65 
66         optimizer.zero_grad()                #梯度信息清空   
67         loss.backward()                      #反向传播获取梯度
68         optimizer.step()                     #优化器更新
69 
70         if batch_idx % 100 == 0:             #每100个batch输出一次信息
71             print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
72                 epoch, batch_idx * len(data), len(train_loader.dataset),
73                        100. * batch_idx / len(train_loader), loss.item()))
74 
75 
76     test_loss = 0
77     correct = 0                                         #correct记录正确分类的样本数
78     for data, target in test_loader:
79         data = data.view(-1, 28 * 28)
80         logits = forward(data)
81         test_loss += criteon(logits, target).item()     #其实就是criteon(logits, target)的值,标量
82         
83         pred = logits.data.max(dim=1)[1]                #也可以写成pred=logits.argmax(dim=1)
84         correct += pred.eq(target.data).sum()
85 
86     test_loss /= len(test_loader.dataset)
87     print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
88         test_loss, correct, len(test_loader.dataset),
89         100. * correct / len(test_loader.dataset)))

Train Epoch: 0 [0/60000 (0%)] Loss: 2.669597
Train Epoch: 0 [20000/60000 (33%)] Loss: 0.815616
Train Epoch: 0 [40000/60000 (67%)] Loss: 0.531289

Test set: Average loss: 0.0029, Accuracy: 8207/10000 (82%)

Train Epoch: 1 [0/60000 (0%)] Loss: 0.629100
Train Epoch: 1 [20000/60000 (33%)] Loss: 0.534102
Train Epoch: 1 [40000/60000 (67%)] Loss: 0.372538

Test set: Average loss: 0.0015, Accuracy: 9135/10000 (91%)

Train Epoch: 2 [0/60000 (0%)] Loss: 0.387911
Train Epoch: 2 [20000/60000 (33%)] Loss: 0.285009
Train Epoch: 2 [40000/60000 (67%)] Loss: 0.239334

Test set: Average loss: 0.0012, Accuracy: 9266/10000 (93%)

Train Epoch: 3 [0/60000 (0%)] Loss: 0.190144
Train Epoch: 3 [20000/60000 (33%)] Loss: 0.227097
Train Epoch: 3 [40000/60000 (67%)] Loss: 0.212044

Test set: Average loss: 0.0011, Accuracy: 9342/10000 (93%)

Train Epoch: 4 [0/60000 (0%)] Loss: 0.209257
Train Epoch: 4 [20000/60000 (33%)] Loss: 0.158875
Train Epoch: 4 [40000/60000 (67%)] Loss: 0.163808

Test set: Average loss: 0.0010, Accuracy: 9391/10000 (94%)

Train Epoch: 5 [0/60000 (0%)] Loss: 0.171966
Train Epoch: 5 [20000/60000 (33%)] Loss: 0.155037
Train Epoch: 5 [40000/60000 (67%)] Loss: 0.207052

Test set: Average loss: 0.0010, Accuracy: 9431/10000 (94%)

Train Epoch: 6 [0/60000 (0%)] Loss: 0.253138
Train Epoch: 6 [20000/60000 (33%)] Loss: 0.144874
Train Epoch: 6 [40000/60000 (67%)] Loss: 0.245244

Test set: Average loss: 0.0009, Accuracy: 9441/10000 (94%)

Train Epoch: 7 [0/60000 (0%)] Loss: 0.139446
Train Epoch: 7 [20000/60000 (33%)] Loss: 0.189258
Train Epoch: 7 [40000/60000 (67%)] Loss: 0.136632

Test set: Average loss: 0.0009, Accuracy: 9477/10000 (95%)

Train Epoch: 8 [0/60000 (0%)] Loss: 0.178528
Train Epoch: 8 [20000/60000 (33%)] Loss: 0.141744
Train Epoch: 8 [40000/60000 (67%)] Loss: 0.148902

Test set: Average loss: 0.0008, Accuracy: 9508/10000 (95%)

Train Epoch: 9 [0/60000 (0%)] Loss: 0.074641
Train Epoch: 9 [20000/60000 (33%)] Loss: 0.095056
Train Epoch: 9 [40000/60000 (67%)] Loss: 0.261752

Test set: Average loss: 0.0008, Accuracy: 9514/10000 (95%)

posted @ 2020-07-11 13:22  最咸的鱼  阅读(618)  评论(0编辑  收藏  举报