tensorflow2.3实现Segformer

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import tensorflow as tf
import math
from math import sqrt
from tensorflow import keras
import sys
from functools import partial
import cv2
import numpy as np
from einops import rearrange
 
def cast_tuple(val, depth):
    return val if isinstance(val, tuple) else (val,) * depth
 
# print(cast_tuple((2,1),5))
# print(cast_tuple(2,5))
#
# dims = (32, 64, 160, 256),
# heads = (1, 2, 5, 8),
# ff_expansion = (8, 8, 4, 4),
# reduction_ratio = (8, 4, 2, 1),
# num_layers = 2,
# channels = 3,
# decoder_dim = 256,
# num_classes = 4
# c = dims, heads, ff_expansion, reduction_ratio, num_layers = map(
#             partial(cast_tuple, depth = 4), (dims, heads, ff_expansion, reduction_ratio, num_layers)
#         )
#
 
#   分组卷积
class DsConv2d(keras.layers.Layer):
    def __init__(self, dim_in, dim_out, kernel_size, padding, stride = (1,1), bias = True):
        super(DsConv2d, self).__init__()
        self.net = keras.Sequential([
            keras.layers.BatchNormalization(),
            keras.layers.Conv2D(dim_in, kernel_size, padding = padding, groups = dim_in, strides = stride, use_bias = bias),    #   改进:可以更深度
            keras.layers.Conv2D(dim_out, kernel_size = 1, use_bias = bias)
        ])
    def call(self, x):
        # print('x:',x.shape)
        return self.net(x)
# d_conv = DsConv2d(dim_in=3,dim_out=512,kernel_size=3,padding='SAME')
# input_data = keras.layers.Input(shape=(101,101,3))
# deal1 = d_conv(input_data)
# print(deal1.shape)
 
 
class PreNorm(tf.keras.Model):
 
    def __init__(self, dim, fn):
        super().__init__()
        self.norm = tf.keras.layers.LayerNormalization(epsilon=1e-5)
        self.fn = fn
 
    def call(self, x):
        return self.fn(self.norm(x))
 
 
class EfficientSelfAttention(keras.layers.Layer):
    def __init__(self,*,dim,heads,reduction_ratio):
        super(EfficientSelfAttention,self).__init__()
        self.scale = (dim // heads) ** -0.5
        self.heads = heads
 
        self.to_q = keras.layers.Conv2D(dim, 1, use_bias = False)
        self.to_k = keras.layers.Conv2D(dim * 1, reduction_ratio, strides = reduction_ratio, use_bias = False)
        self.to_v = keras.layers.Conv2D(dim * 1, reduction_ratio, strides=reduction_ratio, use_bias=False)
        self.to_out = keras.layers.Conv2D(dim, 1, use_bias = False)
 
    def call(self, x):
        h, w = x.shape[-3:-1]
        heads = self.heads
 
        q, k, v = (self.to_q(x), self.to_k(x), self.to_v(x))          #   顺序
        q, k, v = map(lambda t: rearrange(t, 'b  x y (h c)-> (b h) (x y) c', h = heads), (q, k, v))
 
        sim = tf.einsum('b i d, b j d -> b i j', q, k) * self.scale
        attn = tf.nn.softmax(sim,axis = -1)
 
        out = tf.einsum('b i j, b j d -> b i d', attn, v)
        out = rearrange(out, '(b h) (x y) c -> b  x y (h c)', h = heads, x = h, y = w)
        return self.to_out(out)
 
def gelu(x):
    """Gaussian Error Linear Unit.
    This is a smoother version of the RELU.
    Original paper: https://arxiv.org/abs/1606.08415
    Args:
        x: float Tensor to perform activation.
    Returns:
        `x` with the GELU activation applied.
    """
    cdf = 0.5 * (1.0 + tf.tanh(
        (math.sqrt(2 / math.pi) * (x + 0.044715 * tf.pow(x, 3)))))
    return x * cdf
 
class GELU(keras.layers.Layer):
    def call(self, inputs, **kwargs):
        cdf = 0.5 * (1.0 + tf.tanh(
            (math.sqrt(2 / math.pi) * (inputs + 0.044715 * tf.pow(inputs, 3)))))
        return inputs * cdf
 
class MixFeedForward(keras.layers.Layer):
    def __init__(
        self,
        *,
        dim,
        expansion_factor
    ):
        super().__init__()
        hidden_dim = dim * expansion_factor
        self.net = keras.Sequential([
            keras.layers.Conv2D(hidden_dim, 1),
            DsConv2d(hidden_dim,hidden_dim, 3, padding = 'SAME'),           #   改进  :加入一些空洞卷积
            keras.layers.BatchNormalization(),
            GELU(),
            keras.layers.Conv2D(dim, 1)]
        )
    def call(self, x):
        return self.net(x)
 
# class my_Unfold(keras.layers.Layer):
#     def __init__(self,*,kernel, stride , padding,rates=[1, 1, 1, 1]):
#         self.kernel = kernel
#         self.stride = stride
#         self.padding = padding
#         self.rates = rates
#     def call(self, inputs, **kwargs):
#         return tf.image.extract_patches(images=inputs,sizes=[1,self.kernel,self.kernel,1], strides=[1,self.stride,self.stride,1],rates=[1,1,1,1],padding='SAME')
 
 
class MiT(keras.layers.Layer):
    #   dims = (32, 64, 160, 256),heads = (1, 2, 5, 8),ff_expansion = (8, 8, 4, 4),
    #   reduction_ratio = (16, 4, 2, 1),num_layers = 2,channels = 3,decoder_dim = 256,num_classes = 4
    def __init__(self,*,channels,dims,heads,ff_expansion,reduction_ratio,num_layers,stage_kernel_stride_pad):
        super().__init__()
        # self.stage_kernel_stride_pad = ((7, 4, 3), (3, 2, 1), (3, 2, 1), (3, 2, 1))
        # self.stage_kernel_stride_pad = ((3, 2), (3, 2), (3, 2), (3, 2))         #   patch
        self.stage_kernel_stride_pad = stage_kernel_stride_pad
        dims = (channels, *dims)
        dim_pairs = list(zip(dims[:-1], dims[1:]))
 
        self.stages = []
        # self.stages = keras.Sequential()
 
        for (dim_in, dim_out), num_layers, ff_expansion, heads, reduction_ratio in \
                zip(dim_pairs, num_layers, ff_expansion, heads, reduction_ratio):
            # get_overlap_patches = nn.Unfold(kernel, stride = stride, padding = padding)
            # get_overlap_patches = my_Unfold(kernel = kernel, stride=stride, padding='SAME')
            overlap_patch_embed =  keras.layers.Conv2D( dim_out, 1)      #   改动  : 可将卷积核变为3,提取较大的局部信息
 
            layers = []
            # layers = keras.Sequential()
 
            # for _ in range(num_layers):
            for _ in range(4):
                layers.append([
                    PreNorm(dim_out, EfficientSelfAttention(dim = dim_out, heads = heads, reduction_ratio = reduction_ratio)),
                    PreNorm(dim_out, MixFeedForward(dim = dim_out, expansion_factor = ff_expansion)),
                ])
 
            self.stages.append([
                # get_overlap_patches,
                overlap_patch_embed,
                layers
            ])
 
    def call(self,x,return_layer_outputs = False):
 
        layer_outputs = []
        layer_index = 0
        # for (get_overlap_patches, overlap_embed, layers) in self.stages:
        for (overlap_embed, layers) in self.stages:
            ksize,stride = self.stage_kernel_stride_pad[layer_index]
            x = tf.image.extract_patches(images=x,sizes=[1,ksize,ksize,1], strides=[1,stride,stride,1],rates=[1,1,1,1],padding='SAME')
            # num_patches = x.shape[-1]
            # ratio = int(sqrt((h * w) / num_patches))
            # x = rearrange(x, 'b c (h w) -> b c h w', h = h // ratio)
 
            x = overlap_embed(x)
            for (attn, ff) in layers:
                x = attn(x) + x
                x = ff(x) + x
 
            layer_outputs.append(x)
            layer_index+=1
        ret = x if not return_layer_outputs else layer_outputs
        return ret
 
# @tf.function
class Segformer(keras.Model):
    def __init__(self,dims = (32, 64, 160, 256),heads = (1, 2, 5, 8),ff_expansion = (8, 8, 4, 4),
                 reduction_ratio = (16, 4, 2, 1),num_layers = 2,channels = 3,decoder_dim = 256,num_classes = 4,stage_kernel_stride_pad = ((3, 2), (3, 2), (3, 2), (3, 2))):
        super().__init__()
        dims, heads, ff_expansion, reduction_ratio, num_layers = map(
            partial(cast_tuple, depth = 4), (dims, heads, ff_expansion, reduction_ratio, num_layers)
        )
        self.upscale = stage_kernel_stride_pad[0][1]
 
        assert all([*map(lambda t: len(t) == 4, (dims, heads, ff_expansion, reduction_ratio, num_layers))]), 'only four stages are allowed, all keyword arguments must be either a single value or a tuple of 4 values'
 
        self.mit = MiT(
            channels = channels,
            dims = dims,
            heads = heads,
            ff_expansion = ff_expansion,
            reduction_ratio = reduction_ratio,
            num_layers = num_layers,
            stage_kernel_stride_pad = stage_kernel_stride_pad
        )
 
 
        self.to_fused = [
            keras.Sequential([
                keras.layers.Conv2D(decoder_dim, 1),
                # nn.Upsample(scale_factor=2 ** i)
                keras.layers.UpSampling2D(size=(2**i,2**i))
            ]) for i, dim in enumerate(dims)
        ]
 
        self.to_segmentation = keras.Sequential([
            keras.layers.Conv2D(decoder_dim, 1),     #   改进: 激活函数
            keras.layers.BatchNormalization(),
            keras.layers.ReLU(),
            # keras.layers.Conv2DTranspose(filters=decoder_dim//2,kernel_size = [self.upscale+2,self.upscale+2],strides=(self.upscale, self.upscale),padding='SAME'),
            keras.layers.UpSampling2D(size=(self.upscale,self.upscale)),
            # keras.layers.Conv2D(decoder_dim, 3,1, activation=tf.nn.relu),
            keras.layers.Conv2D(num_classes, 1,activation=tf.nn.sigmoid),
 
        ])
 
    @tf.function
    def call(self, x):
        layer_outputs = self.mit(x, return_layer_outputs = True)
 
        # fused = [to_fused(output) for output, to_fused in zip(layer_outputs, self.to_fused)]
        fused = []
 
        for i_stage in range(len(self.to_fused)):
            output = layer_outputs[i_stage]
            to_fused = self.to_fused[i_stage]
            fused.append(to_fused(output))
 
        fused = tf.concat(fused, axis = -1)
        logits = self.to_segmentation(fused)
        # softmax_out = tf.nn.softmax(logits,axis=-1)
 
        return logits
 
 
##############  测试  ################################
# if __name__ == '__main__':
#     s_model = Segformer()
#     img_path = '1.PNG'
#     img = cv2.imread(img_path, 1)
#
#     input_data = np.reshape(img,(1,256,256,3)).astype(np.float32)
#
#     c = s_model(input_data)
#
#     print('input_data:',input_data.shape)
#     print('c:',c.shape)

  

 

 

posted @   山…隹  阅读(192)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
点击右上角即可分享
微信分享提示