tensorflow2.0——history保存loss和acc

history包含以下几个属性:
训练集loss: loss
测试集loss: val_loss
训练集准确率: sparse_categorical_accuracy
测试集准确率: val_sparse_categorical_accuracy

复制代码
my_model.compile(optimizer=opt,loss=tf.keras.losses.MSE)
history=my_model.fit(train_high0_img,train_rain,validation_data=(test_high0_img,test_rain),epochs=epochs, validation_freq=1,batch_size=bat)
#   history包含以下几个属性:
# 训练集loss: loss
# 测试集loss: val_loss
# 训练集准确率: sparse_categorical_accuracy
# 测试集准确率: val_sparse_categorical_accuracy
# acc = history.history['sparse_categorical_accuracy']
# val_acc = history.history['val_sparse_categorical_accuracy']
loss = history.history['loss']
val_loss = history.history['val_loss']
# print('acc:',acc)
# print('val_acc:',val_acc)
print('loss:',loss)
print('val_loss:',val_loss)
复制代码

 

posted @   山…隹  阅读(3677)  评论(0编辑  收藏  举报
编辑推荐:
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构
点击右上角即可分享
微信分享提示