tensorflow2.0——GRU(双门简化版)

GRU相比于LSTM只有两个门:

  

import tensorflow as tf
import os

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')

#   设置相关底层配置
physical_devices = tf.config.experimental.list_physical_devices('GPU')
assert len(physical_devices) > 0, "Not enough GPU hardware devices available"
tf.config.experimental.set_memory_growth(physical_devices[0], True)

#   只取10000个单词,超过10000的按生僻词处理
total_words = 10000
max_sentencelength = 121         #   每个句子最大长度
batchsize = 2000
embedding_len = 100             #   将单词从原来的的一个数扩充为100维的向量

(x_train,y_train),(x_test,y_test) = tf.keras.datasets.imdb.load_data(num_words=total_words)         #   numweord为单词种类个数
print('x_train.shape:',x_train.shape)
print('x_train[3]:',len(x_train[3]),x_train[3])
x_train = tf.keras.preprocessing.sequence.pad_sequences(x_train,maxlen = max_sentencelength)        #   把句子长度限制为定长
print('x_train[3]:',len(x_train[3]),x_train[3])
x_test = tf.keras.preprocessing.sequence.pad_sequences(x_test,maxlen = max_sentencelength)
#   x_train : [b,80] [b,max_sentencelength]   b个句子,每句80(max_sentencelength)个单词
#   x_test : [b,80]
print('x_train.shape:',x_train.shape)
# print('x_train[3]:',x_train[3].shape,x_train[3])
print('y_train.shape:',y_train.shape,tf.reduce_max(y_train),tf.reduce_min(y_train))
db_train = tf.data.Dataset.from_tensor_slices((x_train,y_train))
db_train = db_train.shuffle(1000).batch(batch_size=batchsize,drop_remainder=True)   #   设置drop参数可以把最后一个batch如果与前面的batch长度不一样,就丢弃掉
db_test = tf.data.Dataset.from_tensor_slices((x_test,y_test))
db_test = db_test.batch(batch_size=batchsize,drop_remainder=True)

class MyRnn(tf.keras.Model):
    def __init__(self,units):
        super(MyRnn,self).__init__()
        #   [b,80] => [b,80,100]

        #   [b,64] [b,units]
        # self.state0 = [tf.zeros([batchsize,units])]

        self.embedding = tf.keras.layers.Embedding(total_words,embedding_len,input_length = max_sentencelength)
    #   [b,80,100] ,-> h_dim:units(比如64)
        #   SimpleRNN 后面会用到 ,更简单
        # self.rnn_cell0 = tf.keras.layers.SimpleRNNCell(units,dropout=0.2)
        # self.rnn_cell1 = tf.keras.layers.SimpleRNNCell(units, dropout=0.2)
        self.rnn_cell0 = tf.keras.layers.GRUCell(units,dropout=0.5)
        self.rnn_cell1 = tf.keras.layers.GRUCell(units, dropout=0.5)
        #   fc , [b,80,100] =>[b,64]=>[b,1]
        self.outlayer = tf.keras.layers.Dense(1)
    def __call__(self, inputs, training = None):
        """
        :param inputs:[b,80] [b,句子最大长度(80)]
        :param training:
        """
        # [b,80]
        x = inputs
        print('x.shape:',x.shape)
        #   embedding:[b,80]=>[b,80,100]
        x = self.embedding(x)
        #   rnn cell compute
        #   [b,80,100] = [b,64]
        # print('x.shape[0]:',x.shape[0])
        state0  = [tf.zeros([x.shape[0],units])]
        state1 = [tf.zeros([x.shape[0], units])]
        for word in tf.unstack(x,axis=1):  #   word:[b,100]     以中间的1维度展开(按照需要时序处理的维度展开,这里是句子长度)
            #   x * wxh + h * whh           2层的
            out0,state0 = self.rnn_cell0(word,state0,training)
            out1, state1 = self.rnn_cell1(out0, state1, training)
        # out:[b,64] => [b,1]
        x = self.outlayer(out1)
        prob = tf.sigmoid(x)
        return prob

if __name__ == '__main__':
    units = 64
    epochs = 40
    lr = 1e-2
    model = MyRnn(units)
    model.compile(optimizer=tf.keras.optimizers.Adam(lr),
                  loss= tf.losses.BinaryCrossentropy(),     #   二分类的loss函数
                  metrics=['accuracy'])
    model.fit(db_train,epochs=epochs,validation_data=db_test)
    model.evaluate(db_test)

 

posted @ 2020-10-16 23:56  山…隹  阅读(1210)  评论(0编辑  收藏  举报