tensorflow2.0——过拟合优化regularization(简化参数结构,添加参数代价变量)
参数过多会导致模型过于复杂而出现过拟合现象,通过在loss函数添加关于参数个数的代价变量,限制参数个数,来达到减小过拟合的目的
以下是loss公式:
代码多了一个kernel_regularizer参数
import tensorflow as tf def preporocess(x,y): x = tf.cast(x,dtype=tf.float32) / 255 x = tf.reshape(x,(-1,28 *28)) # 铺平 x = tf.squeeze(x,axis=0) # print('里面x.shape:',x.shape) y = tf.cast(y,dtype=tf.int32) y = tf.one_hot(y,depth=10) return x,y def main(): # 加载手写数字数据 mnist = tf.keras.datasets.mnist (train_x, train_y), (test_x, test_y) = mnist.load_data() # 处理数据 # 训练数据 db = tf.data.Dataset.from_tensor_slices((train_x, train_y)) # 将x,y分成一一对应的元组 db = db.map(preporocess) # 执行预处理函数 db = db.shuffle(60000).batch(2000) # 打乱加分组 # 测试数据 db_test = tf.data.Dataset.from_tensor_slices((test_x, test_y)) db_test = db_test.map(preporocess) db_test = db_test.shuffle(10000).batch(10000) # 设置超参 iter_num = 2000 # 迭代次数 lr = 0.01 # 学习率 # 定义模型器和优化器 model = tf.keras.Sequential([ tf.keras.layers.Dense(256, activation='relu',kernel_regularizer=tf.keras.regularizers.l2(0.001)), # kernel_regularizer是loss上加了关于参数的损失变量 tf.keras.layers.Dense(128, activation='relu',kernel_regularizer=tf.keras.regularizers.l2(0.001)), tf.keras.layers.Dense(64, activation='relu',kernel_regularizer=tf.keras.regularizers.l2(0.001)), tf.keras.layers.Dense(32, activation='relu',kernel_regularizer=tf.keras.regularizers.l2(0.001)), tf.keras.layers.Dense(10) ]) # 优化器 # optimizer = tf.keras.optimizers.SGD(learning_rate=lr) optimizer = tf.keras.optimizers.Adam(learning_rate=lr) # 定义优化器 model.compile(optimizer= optimizer,loss=tf.losses.CategoricalCrossentropy(from_logits=True),metrics=['accuracy']) # 定义模型配置 model.fit(db,epochs=30,validation_data=db,validation_freq=2) # 运行模型,参数validation_data是指在哪个测试集上进行测试 model.evaluate(db_test) # 最后打印测试数据相关准确率数据 if __name__ == '__main__': main()
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· 阿里巴巴 QwQ-32B真的超越了 DeepSeek R-1吗?
· 【译】Visual Studio 中新的强大生产力特性
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 【设计模式】告别冗长if-else语句:使用策略模式优化代码结构