BZOJ 4326 NOIP2015 运输计划(二分答案 + 树上差分思想)
题目链接 BZOJ4326
这个程序在洛谷上TLE了……惨遭卡常
在NOIP赛场上估计只能拿到95分吧= =
把边权转化成点权
首先求出每一条路径的长度
考虑二分答案,$check(now)$
对于当前那些长度大于$now$的路径,用差分求出这些路径经过的点的次数
设这些路径条数为l, 长度最大的路径减去$now$的值为$mx$
(点$x1$经过$y1$次,点$x2$经过$y2$次,..., 点$xm$经过$ym$次)
如果我们能找到一条边(一个点),满足$xk = l$ 且 $yk >= mx$ 则$check$成功,否则失败。
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i) #define dec(i, a, b) for (int i(a); i >= (b); --i) #define MP make_pair #define fi first #define se second typedef long long LL; typedef pair <int, int> PII; const int N = 3e5 + 10; struct node{ int x, y, lca, w; void scan(){ scanf("%d%d", &x, &y);} void print(){ printf("%d %d %d %d\n", x, y, lca, w);} } path[N]; int father[N], deep[N], sz[N], son[N], top[N]; int a[N], b[N], f[N], g[N]; int n, m, x, y, z, l, r, ans; vector <PII> v[N]; void dfs(int x, int fa, int dep, int now){ sz[x] = 1; deep[x] = dep; father[x] = fa; a[x] = now; b[x] = b[fa] + a[x]; int ct = (int)v[x].size(); rep(i, 0, ct - 1){ int u = v[x][i].fi; if (u == fa) continue; dfs(u, x, dep + 1, v[x][i].se); sz[x] += sz[u]; if (sz[son[x]] < sz[u]) son[x] = u; } } void dfs2(int x, int fa, int tp){ top[x] = tp; if (son[x]) dfs2(son[x], x, tp); int ct = (int)v[x].size(); rep(i, 0, ct - 1){ int u = v[x][i].fi; if (u == son[x] || u == fa) continue; dfs2(u, x, u); } } void calc(int x, int fa){ int ct = (int)v[x].size(); rep(i, 0, ct - 1){ int u = v[x][i].fi; if (u == fa) continue; calc(u, x); f[x] += f[u]; } } int LCA(int x, int y){ for (; top[x] ^ top[y]; ){ if (deep[top[x]] < deep[top[y]]) swap(x, y); x = father[top[x]]; } return deep[x] > deep[y] ? y : x; } bool check(int now){ int cnt = 0; int mx = 0; memset(f, 0, sizeof f); rep(i, 1, m) if (path[i].w > now){ int x = path[i].x, y = path[i].y, w = path[i].w, lca = path[i].lca; ++cnt; if (lca == y) ++f[x], --f[y]; else ++f[x], ++f[y], f[lca] -= 2; mx = max(mx, w - now); } calc(1, 0); rep(i, 1, n) if (a[i] >= mx && f[i] == cnt) return true; return false; } int main(){ scanf("%d%d", &n, &m); rep(i, 2, n){ scanf("%d%d%d", &x, &y, &z); v[x].push_back(MP(y, z)); v[y].push_back(MP(x, z)); } dfs(1, 0, 0, 0); dfs2(1, 0, 1); rep(i, 1, m){ path[i].scan(); if (deep[path[i].x] < deep[path[i].y]) swap(path[i].x, path[i].y); path[i].lca = LCA(path[i].x, path[i].y); path[i].w = b[path[i].x] + b[path[i].y] - 2 * b[path[i].lca]; } l = 0, r = 3e8; while (l + 1 < r){ int mid = l + r >> 1; if (check(mid)) r = mid; else l = mid + 1; } if (check(l)) ans = l; else ans = r; printf("%d\n", ans); return 0; }