BZOJ1801 [Ahoi2009]chess 中国象棋(DP, 计数)
题目链接 [Ahoi2009]chess 中国象棋
设$f[i][j][k]$为前i行,$j$列放了1个棋子,$k$列放了2个棋子的方案数
分6种情况讨论,依次状态转移。
1 #include <bits/stdc++.h> 2 3 using namespace std; 4 5 #define rep(i, a, b) for (int i(a); i <= (b); ++i) 6 7 typedef long long LL; 8 const LL mod = 9999973; 9 int n, m; 10 LL f[105][105][105], ans = 0; 11 12 inline LL calc(LL x){ return x * (x - 1) / 2;} 13 14 int main(){ 15 16 scanf("%d%d", &n, &m); 17 f[0][0][0] = 1; 18 rep(i, 1, n){ rep(j, 0, m){ rep(k, 0, m - j){ 19 f[i][j][k] = f[i - 1][j][k]; 20 if (j) f[i][j][k] += f[i - 1][j - 1][k] * (m - k - j + 1); 21 if (j < m && k) f[i][j][k] += f[i - 1][j + 1][k - 1] * (j + 1); 22 if (j && k) f[i][j][k] += f[i - 1][j][k -1] * j * (m - j - k + 1); 23 if (j > 1) f[i][j][k] += f[i - 1][j - 2][k] * calc(m - k - j + 2); 24 if (j <= m - 2 && k > 1) f[i][j][k] += f[i - 1][j + 2][k - 2] * calc(j + 2); 25 f[i][j][k] %= mod; 26 } } 27 } 28 29 rep(i, 0, m) rep(j, 0, m - i) (ans += f[n][i][j]) %= mod; 30 printf("%lld\n", ans); 31 return 0; 32 }