BZOJ4017 小Q的无敌异或(位运算)

题目链接 小Q的无敌异或

好久之前做的这道题了……参照了别人的博客……还是没有全懂。

第一个问题维护个前缀就好了,第二个问题还要用树状数组维护……

 

 1 #include <bits/stdc++.h>
 2 
 3 using namespace std;
 4 
 5 #define rep(i,a,b)              for(int i(a); i <= (b); ++i)
 6 #define LL              long long
 7 #define mod            998244353
 8 
 9 const int N     =    100000      +       10;
10 const int A     =    30          +       1;
11 
12 
13 LL bit[N];
14 int a[N], c[N];
15 int n;
16 int cnt[A];
17 LL xn[N], sum[N];
18 int tmp;
19 LL p[N];
20 LL ans1, ans2;
21 
22 inline void update(int x){ for ( ; x <= n; x += ~x & x + 1) c[x] ^= 1;}
23 inline int query(int x){ int ret = 0; for ( ; x >= 0; x -= ~x & x + 1) ret ^= c[x]; return ret;}
24 
25 inline int idx(LL x){
26     int l = -1, r = n;
27     for (; l < r;){
28         int mid = l + r + 1 >> 1;
29         if (p[mid] <= x) l = mid; else r = mid - 1;
30     }
31     return l;
32 }
33 
34 
35 int main(){
36 
37     bit[0] = 1;
38     rep(i, 1, 53) bit[i] = bit[i - 1] * 2;
39     scanf("%d", &n);
40     rep(i, 1, n){
41         scanf("%d", a + i);
42         xn[i] = xn[i - 1] ^ a[i];
43         sum[i] = sum[i - 1] + a[i];
44     }
45 
46     rep(k, 0, 30){
47         cnt[0] = cnt[1] = 0; tmp = 0;
48         rep(i, 0, n){
49             (tmp += cnt[((xn[i] >> k) & 1) ^ 1]) %= mod;
50             ++cnt[(xn[i] >> k) & 1];
51         }
52 
53         (ans1 += (LL)(bit[k] * tmp) % mod) %= mod;
54     }
55 
56     ans2 = 0;
57     for (int k = 0; 1LL << k <= sum[n]; ++k){
58         tmp = 0;
59         rep(i, 0, n) p[i] = sum[i] & ((1LL << k + 1) - 1);
60         sort(p, p + n + 1);
61         memset(c, 0, sizeof c);
62         rep(i, 0, n){
63             LL now = sum[i] & ((1LL << k + 1) - 1);
64             update(idx(now));
65             tmp ^= query(idx(now - (1LL << k))) ^ query(idx(now + (1LL << k))) ^ query(idx(now));
66         }
67         if (tmp) ans2 |= 1LL << k;
68     }
69     
70 
71     printf("%lld %lld\n", ans1 % mod, ans2);    
72     return 0;
73 
74 }

 

posted @ 2017-03-23 22:07  cxhscst2  阅读(293)  评论(0编辑  收藏  举报