pytorch实现回归
pytorch实现回归
回归
此处回归即用一根曲线近似表示一堆离散点的轨迹。
上图即离散点,下图中的红线即表示离散点轨迹的曲线,求这一曲线的过程就是回归。
pytorch实现
import torch
from torch.autograd import Variable
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy
import os
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1)
y = x.pow(2) + torch.rand(x.size()) * 0.2
x = Variable(x)
y = Variable(y)
# plt.scatter(x.data.numpy(), y.data.numpy())
# plt.show()
class Net(torch.nn.Module):
def __init__(self, n_input, n_hidden, n_output):
super(Net, self).__init__()
self.l1 = torch.nn.Linear(n_input, n_hidden)
self.l2 = torch.nn.Linear(n_hidden, n_output)
def forward(self, x):
x = F.relu(self.l1(x))
x = self.l2(x)
return x
net = Net(1, 10, 1)
plt.ion()
plt.show()
optimizer = torch.optim.SGD(net.parameters(), lr=0.2)
loss_func = torch.nn.MSELoss()
for t in range(2000):
prediction = net(x) # result from neural network
loss = loss_func(prediction, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
if t % 5 == 0:
plt.cla()
plt.scatter(x.data.numpy(), y.data.numpy())
plt.plot(x.data.numpy(), prediction.data.numpy(), 'r-', lw=5) # color of line = r,width of line = 5
plt.text(0.5, 0, 'Loss=%.4f' % loss.data, fontdict={'size': 20, 'color': 'red'})
plt.pause(0.1)
plt.ioff()
plt.show()
输出结果:
代码中Net类就是建立的神经网络,init函数定义神经网络每层的结构,forward定义数据在神经网络中的流向,forward返回值为神经网络末端的输出。
训练前实例化Net类,训练时每一步使用误差反传(第45行loss.backward()),优化器优化(第46行optimizer.step())