10分钟搞懂树状数组
写在前面:自己10分钟看懂了,感觉写的很帅,收藏一下吧
出处:http://blog.csdn.net/int64ago/article/details/7429868
==========================下面是原作者写的===============================
写下这个标题,其实心里还是没底的,与其说是写博帖,不如说是做总结。第一个接触树状数组还是两年前,用什么语言来形容当时的感觉呢?……太神奇了!真的,无法表达出那种感觉,她是那么的优雅,10行不到的代码,却把事情干的如此出色!没有了解她原理的前提下即使把代码倒背如流也理解不了!其中,我就是一直没搞懂地在使用她。时隔两年,又无意遇到了她,可能是两年的代码经验的积累,有了些新的认识,可以自信的说理解了吧!下面我争取用自己的方式让更多人明白她,而不是背诵她。为了更方便的说明,文章里会自己强加一些概念,只是为了更好的理解,不是什么专业术语之类的。
一、树状数组是干什么的?
平常我们会遇到一些对数组进行维护查询的操作,比较常见的如,修改某点的值、求某个区间的和,而这两种恰恰是树状数组的强项!当然,数据规模不大的时候,对于修改某点的值是非常容易的,复杂度是O(1),但是对于求一个区间的和就要扫一遍了,复杂度是O(N),如果实时的对数组进行M次修改或求和,最坏的情况下复杂度是O(M*N),当规模增大后这是划不来的!而树状数组干同样的事复杂度却是O(M*lgN),别小看这个lg,很大的数一lg就很小了,这个学过数学的都知道吧,不需要我说了。申明一下,看下面的文章一定不要急,只需要看懂每一步最后自然就懂了。
二、树状数组怎么干的?
先看两幅图(网上找的,如果雷同,不要大惊小怪~),下面的说明都是基于这两幅图的,左边的叫A图吧,右边的叫B图:
是不是很像一颗树?对,这就是为什么叫树状数组了~先看A图,a数组就是我们要维护和查询的数组,但是其实我们整个过程中根本用不到a数组,你可以把它当作一个摆设!c数组才是我们全程关心和操纵的重心。先由图来看看c数组的规则,其中c8 = c4+c6+c7+a8,c6 = c5+a6……先不必纠结怎么做到的,我们只要知道c数组的大致规则即可,很容易知道c8表示a1~a8的和,但是c6却是表示a5~a6的和,为什么会产生这样的区别的呢?或者说发明她的人为什么这样区别对待呢?答案是,这样会使操作更简单!看到这相信有些人就有些感觉了,为什么复杂度被lg了呢?可以看到,c8可以看作a1~a8的左半边和+右半边和,而其中左半边和是确定的c4,右半边其实也是同样的规则把a5~a8一分为二……继续下去都是一分为二直到不能分,可以看看B图。怎么样?是不是有点二分的味道了?对,说白了树状数组就是巧妙的利用了二分,她并不神秘,关键是她的巧妙!
上面那么多文字说lowbit,还没说它的用处呢,它就是为了联系a数组和c数组的!ck表示从ak开始往左连续求lowbit(k)个数的和,比如c[0110]=a[0110]+a[0101],就是从110开始计算了0010个数的和,因为lowbit(0110)=0010,可以看到其实只有低位的1起作用,因为很显然可以写出c[0010]=a[0010]+a[0001],这就为什么我们任何数都只关心它的lowbit,因为高位不起作用(基于我们的二分规则它必须如此!),除非除了高位其余位都是0,这时本身就是lowbit。
既然关系建立好了,看看如何实现a某一个位置数据跟改的,她不会直接改的(开始就说了,a根本不存在),她每次改其实都要维护c数组应有的性质,因为后面求和要用到。而维护也很简单,比如更改了a[0011],我们接着要修改c[0011],c[0100],c[1000],这是很容易从图上看出来的,但是你可能会问,他们之间有申明必然联系吗?每次求解总不能总要拿图来看吧?其实从0011——>0100——>1000的变化都是进行“去尾”操作,又是自己造的词–”,我来解释下,就是把尾部应该去掉的1都去掉转而换到更高位的1,记住每次变换都要有一个高位的1产生,所以0100是不能变换到0101的,因为没有新的高位1产生,这个变换过程恰好是可以借助我们的lowbit进行的,k +=lowbit(k)。
好吧,现在更新的次序都有了,可能又会产生新的疑问了:为什么它非要是这种关系啊?这就要追究到之前我们说c8可以看作a1~a8的左半边和+右半边和……的内容了,为什么c[0011]会影响到c[0100]而不会影响到c[0101],这就是之前说的c[0100]的求解实际上是这样分段的区间 c[0001]~c[0001] 和区间c[0011]~c[0011]的和,数字太小,可能这样不太理解,在比如c[0100]会影响c[1000],为什么呢?因为c[1000]可以看作0001~0100的和加上0101~1000的和,但是0101位置的数变化并会直接作用于c[1000],因为它的尾部1不能一下在跳两级在产生两次高位1,是通过c[0110]间接影响的,但是,c[0100]却可以跳一级产生一次高位1。
可能上面说的你比较绕了,那么此时你只需注意:c的构成性质(其实是分组性质)决定了c[0011]只会直接影响c[0100],而c[0100]只会直接影响[1000],而下表之间的关系恰好是也必须是k +=lowbit(k)。此时我们就是写出跟新维护树的代码:
void add(int k,int num){
while(k<=n){
tree[k]+=num;
k+=k&-k;
}
}
有了上面的基础,说求和就比较简单了。比如求0001~0110的和就直接c[0100]+c[0110],分析方法与上面的恰好逆过来,而且写法也是逆过来的,具体就不累述了:
int read(int k){//1~k的区间和
int sum=0;
while(k){
sum+=tree[k];
k-=k&-k;
}
return sum;
}
三、总结一下吧
首先,明白树状数组所白了是按照二分对数组进行分组;维护和查询都是O(lgn)的复杂度,复杂度取决于最坏的情况,也是O(lgn);lowbit这里只是一个技巧,关键在于明白c数组的构成规律;分析的过程二进制一定要深入人心,当作心目中的十进制。
=====================分割线=============================
饥渴难耐的键盘,迅速找了发模板题压压惊
hdu1166
#include<cstdio>
#include<string>
#include<cstring>
#include<iostream>
using namespace std;
const int N=50500;
int tree[N],n,x,y;
string st;
void add(int k,int num){
while (k<=n){
tree[k]+=num;
k+=k&-k;//lowbit找父亲
}
}
int read(int k){
int sum=0;
while (k){
sum+=tree[k];
k-=k&-k;//lowbit,找儿子
}
return sum;
}
int main(){
//freopen("fuck.in","r",stdin);
int T;scanf("%d",&T);
for (int cas=1;cas<=T;cas++){
scanf("%d",&n);
memset(tree,0,sizeof(tree));
for (int i=1;i<=n;i++){
scanf("%d",&x);
add(i,x);//原数组并不存在
}
scanf("\n");
printf("Case %d:\n",cas);
int k=0;
for (;cin>>st&&st[0]!='E';){
scanf("%d%d",&x,&y);
if (st[0]=='Q') printf("%d\n",read(y)-read(x-1));
else if (st[0]=='A')add(x,y);
else add(x,-y);
}
}
return 0;
}