斜率优化学习笔记
斜率优化
适用范围:
斜率优化适用于dp状态较容易维护且决策点与全局直接无关的dp
例如:
f[i]=min(f[k]+a[k]*a[i]);
这里含有a[k]*a[i]这一项,所以不能简单用单调队列根据决策点的权值来判断,要使用斜率优化
使用:
举出一个方程式:
f[i]=min(f[k]+(sum[i]-sum[k])^2+c);
化简得:
f[i]=min(f[k]+sum[i]^2+sum[k]^2-2*sum[i]*sum[k]+c)
将min函数去掉,把含只含k的项移到等式左边,含i,k的项移到等号右边,只含i的项和常数移到前者右边,得到:
f[k]+sum[k]^2=2*sum[i]*sum[k]-sum[i]^2-c+f[i]
将此式看作一次函数:Y=KX+B
Y=f[k]+sum[k]^2 K=2*sum[i]; X=sum[k] B=-sum[i]^2-c+f[i]
long long X(long long k) { return ... } long long Y(long long k) { return ... }(声明函数名)
相当于Y,K,X已知权值,我们只需找到一个最合适的X使B最小就行了
那么如何优化?
发现三个点k1,k2,k3
如果连结k1,k2直线的斜率比连结k2,k3直线的斜率大,那么k2必定是无用点,去除k2
这样一来,斜率必定是单调上升的,可以通用单调队列来维护这些点
long long check2(long long x, long long y, long long z) { return (Y(y) - Y(x)) * (X(z) - X(y)) > (X(y) - X(x)) * (Y(z) - Y(y)); }
针对所有函数Y=KX+B分3种情况讨论
1:K,X都有单调性
用单调队列维护,用每个i对应的K来更新队头,再取出取出队头作为决策点,再踢无用队尾,加入i点,时间复杂度O(n)
long long check1(long long x, long long y, long long k) { return (Y(y) - Y(x)) < (X(y) - X(x)) * k; }
long long head = 1, tail = 0; t[++tail] = 0; for (long long i = 1; i <= n; i++) { long long K = ...(i所对应的斜率) while (head < tail && check1(t[head], t[head + 1], K)) head++; f[i] = f[t[head]] + (sum[i] - sum[t[head]]) * (sum[i] - sum[t[head]]) + c; while (head < tail && check2(t[tail - 1], t[tail], i)) tail--; t[++tail] = i; }
2:K无单调性,X有单调性,用二分找出最优点,无需踢队头,其余步骤一样,时间复杂度O(nlogn)
long long find(long long k) { long long l = head, r = tail; while (l < r) { long long mid = (l + r) >> 1; if (check1(t[mid], t[mid + 1], k)) l = mid + 1; else r = mid; } return t[l]; }
t[++tail] = 0; for (long long i = 1; i <= n; i++) { long long K = sumt[i]; long long pre = find(K); f[i] = f[pre] + (sumc[n] - sumc[pre]) * (s + sumt[i] - sumt[pre]); while (head < tail && check2(t[tail - 1], t[tail], i)) tail--; t[++tail] = i; }
3:x没有单调性,这样必须动态差点,需要用splay,坑以后再填
例题:
[SDOI2012]任务安排
#include < bits / stdc++.h > using namespace std; const long long N = 3e5 + 10; long long t[N], c[N], sumt[N], sumc[N], f[N]; long long n, s; long long head = 1, tail = 0; long long X(long long k) { return sumc[k]; } long long Y(long long k) { return f[k] - sumc[n] * sumt[k] - sumc[k] * s + sumc[k] * sumt[k]; } long long check1(long long x, long long y, long long k) { return (Y(y) - Y(x)) <= (X(y) - X(x)) * k; } long long check2(long long x, long long y, long long z) { return (Y(y) - Y(x)) * (X(z) - X(y)) >= (X(y) - X(x)) * (Y(z) - Y(y)); } long long find(long long k) { long long l = head, r = tail; while (l < r) { long long mid = (l + r) >> 1; if (check1(t[mid], t[mid + 1], k)) l = mid + 1; else r = mid; } return t[l]; } int main() { memset(f, 0x3f, sizeof(f)); f[0] = 0; scanf("%lld%lld", &n, &s); for (long long i = 1; i <= n; i++) scanf("%lld%lld", &t[i], &c[i]); for (long long i = 1; i <= n; i++) sumt[i] = sumt[i - 1] + t[i]; for (long long i = 1; i <= n; i++) sumc[i] = sumc[i - 1] + c[i]; t[++tail] = 0; for (long long i = 1; i <= n; i++) { long long K = sumt[i]; long long pre = find(K); f[i] = f[pre] + (sumc[n] - sumc[pre]) * (s + sumt[i] - sumt[pre]); while (head < tail && check2(t[tail - 1], t[tail], i)) tail--; t[++tail] = i; } printf("%lld\n", f[n]); }
总结:
针对斜率优化的dp,只要将方程化简后找出k,x的单调性分情况讨论套模板即可
you are both faker