Python知识(6)--numpy做矩阵运算
矩阵运算
论numpy中matrix 和 array的区别:http://blog.csdn.net/vincentlipan/article/details/20717163
matrix 和 array的差别: Numpy matrices必须是2维的,但是 numpy arrays (ndarrays) 可以是多维的(1D,2D,3D····ND). Matrix是Array的一个小的分支,包含于Array。所以matrix 拥有array的所有特性。
1.基本运算
import numpy as np a = np.array([[-1,2],[2,3]]) b = np.array([[3,4],[4,5]]) print '\n a:\n',a print '\n b:\n',b ##转置 print '\n a transpose:\n',a.T ##共扼矩阵 #print '\n a H:\n',a.I ##逆矩阵 print '\n a inv:\n',np.linalg.inv(a) # 求逆 ##转置 print '\n a transpose:\n',a.T # a + b,矩阵相加 print "\n a+b: \n",a+b # a - b,矩阵相减 print "\n a-b: \n",a-b #2x2 矩阵,矩阵相乘 print "\n a mul b:\n",a.dot(b.T) #2x3矩阵,矩阵点乘 print "\n a dot b: \n",a*b #2x3矩阵,矩阵点除 print "\n a/b \n:",a/np.linalg.inv(b) #求迹 print "\n a trace",np.trace(a) #特征,特征向量 eigval,eigvec = np.linalg.eig(a) #eigval = np.linalg.eigvals(a) #直接求解特征值 print "\n a eig value:\n",eigval, print'\n a eig vector:\n',eigvec
运算结果:
a: [[-1 2] [ 2 3]] b: [[3 4] [4 5]] a transpose: [[-1 2] [ 2 3]] a inv: [[-0.42857143 0.28571429] [ 0.28571429 0.14285714]] a transpose: [[-1 2] [ 2 3]] a+b: [[2 6] [6 8]] a-b: [[-4 -2] [-2 -2]] a mul b: [[ 5 6] [18 23]] a dot b: [[-3 8] [ 8 15]] a/b : [[ 0.2 0.5] [ 0.5 -1. ]] a trace 2 a eig value: [-1.82842712 3.82842712] a eig vector: [[-0.92387953 -0.38268343] [ 0.38268343 -0.92387953]]
2.特殊矩阵
import numpy as np a = np.zeros([4,5]) # all zero print '\nall zero \n',a a = np.ones([7,6]) # all one print '\nall one \n',a a = np.eye(4,7) # 4x7 diagonal print '\n4x7 diagonal \n',a a = np.diag(range(5)) # 5x5 diagonal print '\n5x5 diagonal \n',a a = np.empty((2,3)) print '\nempty \n',a a = np.arange(10, 30, 5) # array([10, 15, 20, 25]), 1-D print '\n array([10, 15, 20, 25]), 1-D \n',a a = np.linspace(0, 2, 9) # 9 numbers from 0 to 2 print '\n9 numbers from 0 to 2 \n',a a = np.random.random((2,3)) # random matrics print '\nrandom matrics \n',a import numpy as np a = np.zeros([4,5]) # all zero print '\nall zero \n',a a = np.ones([7,6]) # all one print '\nall one \n',a a = np.eye(4,7) # 4x7 diagonal print '\n4x7 diagonal \n',a a = np.diag(range(5)) # 5x5 diagonal print '\n5x5 diagonal \n',a a = np.empty((2,3)) print '\nempty \n',a a = np.arange(10, 30, 5) # array([10, 15, 20, 25]), 1-D print '\n array([10, 15, 20, 25]), 1-D \n',a a = np.linspace(0, 2, 9) # 9 numbers from 0 to 2 print '\n9 numbers from 0 to 2 \n',a a = np.random.random((2,3)) # random matrics print '\nrandom matrics \n',a
运算结果:
all zero [[ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.] [ 0. 0. 0. 0. 0.]] all one [[ 1. 1. 1. 1. 1. 1.] [ 1. 1. 1. 1. 1. 1.] [ 1. 1. 1. 1. 1. 1.] [ 1. 1. 1. 1. 1. 1.] [ 1. 1. 1. 1. 1. 1.] [ 1. 1. 1. 1. 1. 1.] [ 1. 1. 1. 1. 1. 1.]] 4x7 diagonal [[ 1. 0. 0. 0. 0. 0. 0.] [ 0. 1. 0. 0. 0. 0. 0.] [ 0. 0. 1. 0. 0. 0. 0.] [ 0. 0. 0. 1. 0. 0. 0.]] 5x5 diagonal [[0 0 0 0 0] [0 1 0 0 0] [0 0 2 0 0] [0 0 0 3 0] [0 0 0 0 4]] empty [[ 0.06012241 0.30847312 0.20174074] [ 0.37654373 0.71036135 0.15586512]] array([10, 15, 20, 25]), 1-D [10 15 20 25] 9 numbers from 0 to 2 [ 0. 0.25 0.5 0.75 1. 1.25 1.5 1.75 2. ] random matrics [[ 0.44052293 0.42283564 0.44825331] [ 0.66735609 0.32664018 0.17015328]]
Make Change - Focus on Computer Vision and Pattern Recognition
版权声明:本文为博主原创文章,未经博主允许不得转载
版权声明:本文为博主原创文章,未经博主允许不得转载